首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
 A dominant gene conferring resistance to all known races of Puccinia hordei Otth was identified in two accessions of Hordeum vulgare ssp. spontaneum. Using restriction fragment length polymorphism (RFLP) markers the gene was mapped on chromosome 2HS in doubled-haploid populations derived from crosses of both accessions to the susceptible cultivar L94. Until now, complete leaf rust resistance was not known to be conditioned by genetic factors on this barley chromosome. Therefore, the designation Rph16 is proposed for the gene described in this study. A series of sequence tagged site (STS) and cleaved amplified polymorphic sequence (CAPS) markers were generated by conversion of RFLP probes which originate from the chromosomal region carrying the resistance gene. Two PCR-based markers were shown to co-segregate with the Rph16 gene in both populations thus providing the basis for marker-assisted selection. Received: 20 May 1998 / Accepted: 9 June 1998  相似文献   

3.
The effects of two concentrations of two carboxylic acid anilide fungicides (benodanil and oxycarboxin) on fungal growth, carbohydrate movement and metabolism in barley leaves infected with Puccinia hordei were investigated using radiological, biochemical and histological techniques. At the higher concentration, both fungicides killed the fungus and prevented normal movement of carbohydrate to the pustules and accumulation of fungal carbohydrates. Autoradiography showed that small amounts ofassimilates accumulated at infection sites when leaves or leaf segments were treated with the lower concentration that allowed slight fungal growth. Associated biochemical changes were monitored. Possible mechanisms involved in the alterations caused bythe fungicides are discussed.  相似文献   

4.
The development of Puccinia hordei on barley cv. Zephyr   总被引:2,自引:0,他引:2  
Germination of uredospores of Puccinia hordei was similar on cover-slips and on the first leaves of barley seedlings (cv. Zephyr) at 100 % r.h. over the range 5–25 °C, being greatest at 20 °C. At 15, 20 and 25 °C maximum germination was attained in 6 h. No uredospores germinated on coverslips in humidities below saturation. The numbers of pustules which subsequently developed on plants incubated at 5, 10, 15 or 18 °C and 100 % r.h. for varying periods up to 24 h, were directly related to rise in temperature and length of incubation. The time from inoculation to eruption of pustules (generation time) was 6 days at 25 °C, 8 days at 20 °C, 10 days at 15 °C, 15 days at 10 °C and 60 days at 5 °C. Pustule production on inoculated plants which had been kept at 5 °C was rapidly accelerated when they were transferred to 20 °C. Data obtained at constant temperatures were used to predict generation times of the fungus in the field. The productivity of pustules, determined as weight of uredospores, was examined at 10, 15 and 20 °C. Significantly more spores were produced at 15 than at 10 °C and most were produced at 20 °C. The results are discussed in relation to those obtained by other workers and to the development of brown rust in the field.  相似文献   

5.
The wheat stripe (yellow) rust is one of the most important diseases in Iran. In this study, 41 races out of 104 isolates in greenhouse were determined from 2008 to 2010. Races 6E6A+, 6E10A+ and 6E0A+ were more common. Races 0E0A+ was less aggressive than races 166E158A+ and 134E158A+ with virulence on 11 known genes. Virulence on plant/s with gene/s Yr1, Yr2, Yr4, Yr6, Yr7, Yr8, Yr9, Yr10, Yr25, Yr27, YrSU, YrSD, YrND, Yr3, Yr2+, Yr6+, Yr9+, Yr7+, YrCV and YrA was detected. The majority of isolates with high frequency (more than 70%) showed virulence on plant/s with Yr2, Yr7, Yr9 and YrA genes. No virulence was detected on plant/s with Yr3, Yr5 and YrSP. In greenhouse test, frequency of virulence to wheat genotypes with Yr1, Yr4, Yr10, YrCV (32+) and YrSD gene was less than 7%. Frequency of virulence to other wheat genotypes was between 8 and 100%.  相似文献   

6.
By using a high-density AFLP marker linkage map, six QTLs for partial resistance to barley leaf rust (Puccinia hordei) isolate 1.2.1. have been identified in the RIL offspring of a cross between the partially resistant cultivar ’Vada’ and the susceptible line L94. Three QTLs were effective at the seedling stage, and five QTLs were effective at the adult plant stage. To study possible isolate specificity of the resistance, seedlings and adult plants of the 103 RILs from the cross L94×’Vada’ were also inoculated with another leaf rust isolate, isolate 24. In addition to the two QTLs that were effective against isolate 1.2.1. at the seedling stage, an additional QTL for seedling resistance to isolate 24 was identified on the long arm of chromosome 7. Of the eight detected QTLs effective at the adult plant stage, three were effective in both isolates and five were effective in only one of the two isolates. Only one QTL had a substantial effect at both the seedling and the adult plant stages. The expression of the other QTLs was developmental-stage specific. The isolate specificity of the QTLs supports the hypothesis of Parlevliet and Zadoks (1977) that partial resistance may be based on a minor-gene-for-minor-gene interaction. Received: 16 February 1999 / Accepted: 20 February 1999  相似文献   

7.
Interactions of Puccinia hordei and Erysiphe graminis on seedling barley   总被引:1,自引:0,他引:1  
The development of Puccinia hordei on the first leaf of barley seedlings previously inoculated with Erysiphe graminis was compared with that on uninoculated leaves of comparable age. On cv. Zephyr, more rust pustules developed when leaves were inoculated with both fungi within 24 h but fewer pustules if the period between the two inoculations was longer than 2 days. The reduction in numbers of rust pustules was especially marked where leaves were previously inoculated with many conidia of E. graminis. The size of rust pustules was reduced whatever the period between the two inoculations. Arresting mildew development by applying ethirimol as a soil drench to pots of seedlings inoculated with E. graminis 6 days previously, or floating segments of leaves inoculated with both fungi on 2% sucrose, in part counteracted these effects on rust pustule size. Similar effects were observed with cv. Mazurka where inoculations with E. graminis produced only small necrotic flecks but did induce premature loss of chlorophyll. On this cultivar (in contrast to Zephyr) the inoculation of one leaf surface affected the development of P. hordei on the other. In comparable experiments using Zephyr, E. graminis produced smaller colonies with fewer conidiophores on leaves previously inoculated with P. hordei. These effects could be alleviated by arresting rust development with a spray containing benodanil or by floating segments of leaves inoculated with both fungi on 2% sucrose. Germination of the conidia of E. graminis, formation of appressoria and initiation of colonies were not affected by the presence of P. hordei.  相似文献   

8.
Two genes conferring resistance to the barley stripe rust found in Mexico and South America, previously identified as race 24, were mapped to the M arms of barley chromosomes 7 and 4 in a doubled haploid population using molecular markers and the quantitative trait loci (QTL) mapping approach. The resistance gene on chromosome 7 had a major effect, accounting for 57% of the variation in disease severity. The resistance gene on chromosome 4 had a minor effect, accounting for 10% of the variation in trait expression. Two pairs of restriction fragment length polymorphism markers are being used to introgress the resistance genes to North American spring barley using molecular marker-assisted backcrossing.Ore. Agric Exp Stn J no. 10283  相似文献   

9.
Using AFLP markers, a linkage map was constructed based on a recombinant inbred population of barley derived from a cross between a leaf rust susceptible line, L94, and a partially resistant line, 116-5. The constructed map showed a similar marker distribution pattern as the L94 × Vada map. However, it contained more large gaps, and for some chromosome regions no markers were identified. These regions are most likely derived from L94 because 116-5 was selected from the progeny of a cross of L94 × cv. Cebada Capa. Five QTLs for partial resistance to isolate 1.2.1. were mapped on the L94 × 116-5 map. Three QTLs were effective in the seedling stage, jointly contributing 42% to the total phenotypic variance. Three QTLs were effective in the adult plant stage, collectively explaining 35% of the phenotypic variance. Evidence for two additional linked minor-effect QTLs effective in the adult plant stage was also uncovered. The major-effect QTL, Rphq3, was the only one that was effective in both developmental stages. Moreover, Rphq3, was also identified in the L94 × Vada population, being effective to two rust isolates. The other QTLs were detected in either of the two populations, providing evidence for the existence of many loci for partial resistance to leaf rust on the barley genome. To date, 13 QTLs for partial resistance have been mapped, therefore, a strategy of accumulating many resistance genes in a single cultivar, resulting in a high level of partial resistance, is feasible.  相似文献   

10.
11.

Key message

To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants.”

Abstract

Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.  相似文献   

12.
Seed tubers of the varieties King Edward, Majestic and Pentland Crown selected as ‘clean’ (lesion-free), moderately, or severely affected by gangrene lesions were planted in field experiments. Infection delayed plant emergence, increased the number of stems/plant, sometimes caused gaps in crops and was associated with increased blackleg. On average severely affected seed yielded 20% less than ‘clean’ seed. Seed infection also increased the proportion of tubers in smaller size grades so that crops from severely infected King Edward seed averaged 1·4 ton/acre (3·5 t/ha) less small ware and 2·5 ton/acre (6·3 t/ha) less large ware than ‘clean’ seed. With Majestic, small ware was increased (0·7 ton/acre (1·8 t/ha)) and large ware decreased (4·4 ton/acre(11·0 t/ha)); Pentland Crown was similarly affected (small ware increased 0·8 ton/acre (2·0 t/ha); large ware decreased 3·9 ton/acre (9·8 t/ha)). In eight of twelve experiments unselected diseased stocks yielded significantly less than ‘clean’ tubers. Other experiments compared seed stocks with different proportions of gangrene-infected seed tubers. Yields decreased as the proportion of diseased seed tubers increased, but differences were significant only when more than 60% were affected. Surprisingly, yields from ‘clean’ tubers also decreased as the proportion of diseased tubers increased in the stocks from which they were selected. Gangrene on progeny tubers after storage was not always related to the amount of gangrene visible on the seed. It was increased by riddling or wounding and decreased by dipping tubers in organo-mercury fungicide before or soon after wounding.  相似文献   

13.
 The partial resistance to leaf rust in barley is a quantitative resistance that is not based on hypersensitivity. To map the quantitative trait loci (QTLs) for partial resistance to leaf rust, we obtained 103 recombinant inbred lines (RILs) by single-seed descent from a cross between the susceptible parent L94 and the partially resistant parent Vada. These RILs were evaluated at the seedling and adult plant stages in the greenhouse for the latent period (LP) of the rust fungus, and in the field for the level of infection, measured as area under the disease progress curve (AUDPC). A dense genetic map based on 561 AFLP markers had been generated previously for this set of RILs. QTLs for partial resistance to leaf rust were mapped using the “Multiple Interval Mapping” method with the putative QTL markers as cofactors. Six QTLs for partial resistance were identified in this population. Three QTLs, Rphq1, Rphq2 and Rphq3, were effective at the seedling stage and contributed approximately 55% to the phenotypic variance. Five QTLs, Rph2, Rphq3, Rphq4, Rphq5, and/or Rphq6 contributed approximtely. 60% of the phenotypic variance and were effective at the adult plant stage. Therefore, only the QTLs Rphq2 and Rhpq3 were not plant-stage dependent. The identified QTLs showed mainly additive effects and only one significant interaction was detected, i.e. between Rphq1 and Rphq2. The map positions of these QTLs did not coincide with those of the race-specific resistance genes, suggesting that genes for partial resistance and genes for hypersensitive resistance represent entirely different gene families. Also, three QTLs for days to heading, of which two were also involved in plant height, were identified in the present recombinant inbred population. These QTLs had been mapped previously on the same positions in different populations. The perspectives of these results for breeding for durable resistance to leaf rust are discussed. Received: 15 July 1997 / Accepted: 30 December 1997  相似文献   

14.
Genetic studies were undertaken to determine the inheritance and genomic location of uncharacterised seedling resistance to leaf rust, caused by Puccinia hordei, in the barley cultivar Ricardo. The resistance was shown to be conferred by a single dominant gene, which was tentatively designated RphRic. Bulk segregant analysis (BSA) and genetic mapping of an F3 mapping population using multiplex-ready SSR genotyping and Illumina GoldenGate SNP assay located RphRic in chromosome 4H. Given that this is the first gene for leaf rust resistance mapped on chromosome 4H, it was designated Rph21. The presence of an additional gene, Rph2, in Ricardo, was confirmed by the test of allelism. The seedling gene Rph21 has shown effectiveness against all Australian pathotypes of P. hordei tested since at least 1992 and hence represents a new and useful source of resistance to this pathogen.  相似文献   

15.
A doubled haploid (DH) barley (Hordeum vulgare L.) population of 334 lines (ND24260?×?Flagship) genotyped with DArT markers was used to map genes for adult plant resistance (APR) to leaf rust (Puccinia hordei Otth) under field conditions in Australia and Uruguay. The Australian barley cultivar Flagship carries an APR gene (qRphFlag) derived from the cultivar Vada. Association analysis and composite interval mapping identified two genes conferring APR in this DH population. qRphFlag was mapped to the short arm of chromosome 5H (5HS), accounting for 64?C85% of the phenotypic variation across four field environments and 56% under controlled environmental conditions (CEC). A second quantitative trait locus (QTL) from ND24260 (qRphND) with smaller effect was mapped to chromosome 6HL. In the absence of qRphFlag, qRphND conferred only a low level of resistance. DH lines displaying the highest level of APR carried both genes. Sequence information for the critical DArT marker bPb-0837 (positioned at 21.2?cM on chromosome 5HS) was used to develop bPb-0837-PCR, a simple PCR-based marker for qRphFlag. The 245?bp fragment for bPb-0837-PCR was detected in a range of barley cultivars known to possess APR, which was consistent with previous tests of allelism, demonstrating that the qRphFlag resistant allele is common in leaf rust resistant cultivars derived from Vada and Emir. qRphFlag has been designated Rph20, the first gene conferring APR to P. hordei to be characterised in barley. The PCR marker will likely be effective in marker-assisted selection for Rph20.  相似文献   

16.
Brown rust of barley (Puccinia hordei) is widespread in New Zealand and causes crop losses in some years. The cultivars presently grown lack adequate genetic resistance but a highly resistant line has been produced. Twelve different virulence combinations were identified in the pathogen population using the Welsh differential lines; there were differences between North Island and South Island isolates; and no virulence was observed for resistance conferred by factors Pa 3 and Pa 7.  相似文献   

17.
18.
利用AFLP遗传连锁图定位大麦苗期对叶锈病的部分抗性基因   总被引:11,自引:0,他引:11  
陈万权  漆小泉 《遗传学报》1999,26(6):690-694
借助大麦染色体AFLP标记遗传连锁图和MapQTLV3.0作图软件,对大麦叶病的数量抗性基因进行了定位分析,明确了大麦部分抗性品种Vada对叶锈病的潜育期由分别位于染色体1、2、6、7上离短臂末端79cM、186cM、58cM和117cM处的4个数量抗性基因所控制。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号