首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Psoriasis is a common chronic and recurrent inflammatory skin disease with unknown etiology that has been associated with abnormal plasma lipid metabolism and oxidative stress. There are controversial results in the previous studies investigating oxidant/antioxidant systems in psoriasis. The aim of this work was to evaluate dyslipidemia, oxidative stress, total antioxidant capacity and serum paraoxonase (PON1) and arylesterase (ARE) activities in psoriasis, and to look for a correlation between these parameters and lesion percentage in psoriasis. Thirty psoriatic patients and twenty three sex‐ and agematched healthy volunteers were included in the study. From blood samples, lipid profile, malondialdehyde (MDA) levels, total antioxidant capacity (TAO), serum PON1 and ARE activities were determined. No significant differences between the patients and controls were found in terms of total cholesterol, triacylglycerol (TAG), HDL‐cholesterol, LDL‐cholesterol, VLDL‐cholesterol, MDA and TAO levels. Serum PON1 and sodium‐stimulated PON1 activities (p < 0.05) and ARE activity (p < 0.01) were found significantly higher in the patients than in the controls. There was not any significant correlation between lesion percentage and the parameters studied. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
ABSTRACT

Exposure to high doses of acetaminophen is the most common cause of drug induced liver injury. We investigated the protective effects of Hedera helix extract against acetaminophen induced oxidative stress and hepatotoxicity using a mouse model. We used two control groups: group A was given 0.9% NaCl, group B was an acetaminophen control that was given a single injection of 600 mg/kg acetaminophen. T1?T4 groups were pretreated orally with different doses of H. helix extract. The mice were sacrificed and blood samples were collected to estimate the levels of glutathione peroxidase (GPx), malondialdehyde (MDA), superoxide dismutase (SOD) and total bilirubin. Liver samples also were used for histopathological studies. We found that acetaminophen significantly increased the levels of serum ALP, ALT, AST and MDA, and also significantly reduced the antioxidant factors, CAT, GPX and SOD. H. helix extract treatment produced a significant reduction in the levels of ALP, ALT, AST and MDA in serum and restored the levels of CAT, GPX and SOD to control levels. The histopathological findings were consistent with the biochemical findings. H. helix extract exhibited antioxidant and hepatoprotective effects against acetaminophen induced liver damage.  相似文献   

3.
Abstract

Background

It has been demonstrated that oxidative stress can induce red blood cell rigidity and haemolysis, which in turn can cause hyperviscosity and hyperbilirubinaemia, respectively. However, haemolysis may be associated with a low level of haemoglobin, which reduces whole blood viscosity (WBV). Bilirubin can behave as antioxidant or oxidant, and one uncharted course for diagnostic pathology is how or whether bilirubinaemia and viscosity are associated. Further, oxidative stress is now being assessed using lipoprotein-a (Lp(a)), among other things but whether it is associated with blood viscosity has not been established.

Aim

This study investigates the association and correlation of haemoglobin level and WBV with serum Lp(a) and bilirubin levels in a general population of patients.

Materials and methods

Sixty-eight cases that were tested for Lp(a), concomitantly with full blood count and liver function, in our archived clinical pathology database were used in this study. WBV levels were determined using a validated formula. Multivariate and univariate analyses as well as correlation were performed.

Results

WBV was found to be significantly associated with bilirubin (P < 0.02), but not with Lp(a). Haemoglobin concentration was inversely correlated with Lp(a) (P < 0.04), but not with bilirubinaemia.

Conclusion

This pilot study suggests that hyperbilirubinaemia and hyperviscosity are associated and positively correlated. Consideration of whether serum bilirubin (as an indirect index of oxidative stress) can be used in combination with WBV (as index of macrovascular effect of oxidative stress) to assess oxidative damage is recommended.  相似文献   

4.
Oxidative stress is a critical route of damage in various psychological stress-induced disorders, such as depression. Paraoxonase-1 (PON1) plays an important role as an endogenous free-radical scavenging molecule. The aim of this study was to evaluate the influence of serum PON1 activity and oxidative stress in patients with selective serotonin reuptake inhibitor (SSRI) intoxication. A total of 11 patients with SSRI intoxication and 20 healthy controls were enrolled. The serum total antioxidant capacity (TAC) and malondialdehyde (MDA) levels, as well as the paraoxonase and arylesterase activities, were measured spectrophotometrically. The serum TAC levels and the paraoxonase and arylesterase activities were significantly lower (for all, p < 0.001), whereas the serum MDA levels were significantly higher in the patients with SSRI intoxication than in the controls (p < 0.001). These results indicated that decreased PON1 activity and increased oxidative stress represent alternative mechanisms in SSRI toxicity. More studies are needed to elucidate the role of PON1 activity in the etiology of SSRI intoxication.  相似文献   

5.
Growing clinical evidence suggests that metabolic behavior and atherogenic potential vary within lipoprotein subclasses that can be defined by apolipoprotein variation. Variant constituency of apolipoproteins B and E (apoB and apoE) may be particularly important because of the central roles of these apolipoproteins in the endogeneous lipid delivery cascade. ApoB is the sole protein of low-density lipoprotein (LDL), and like LDL cholesterol, the plasma apoB level has been positively correlated with risk for atherosclerotic disease. ApoE is a major functional lipoprotein in the triglyceride-rich lipoproteins, and may be crucial in the conversion of very low density lipoprotein (VLDL) to LDL. Based on work by others that enabled the quantititation of apoB-containing particles by content of up to two other types of apolipoprotein, we have developed a method for determining the amount of apoE in apoB-containing lipoproteins (Lp B:E) and the amount of apoB in apoE-containing lipoproteins (Lp E:B). From the Lp B:E and Lp E:B concentrations, the molar ratio of apoE to apoB in lipoproteins containing apoB and/or apoE in plasma can be determined. The methodology is fast, specific, and sensitive and should prove extremely useful in further categorizing lipoproteins and characterizing their behavior. In applying this method to clinical groupings of normo- and hyperlipidemia, we found that the plasma triglyceride level correlated with the apoE and Lp B:E concentrations in plasma, while the total cholesterol level correlated with the apoB and Lp E:B levels.  相似文献   

6.
Gout patients have a high incidence of atherosclerotic coronary heart disease. Low serum paraoxonase (PON) activity is considered a risk factor for atherosclerosis. The relationships among paraoxonase-1 (PON1) activity, oxidative stress parameters, and atherosclerosis in gout is not known. Therefore, we determined the plasma levels of malondialdehyde (MDA), oxidized low-density lipoprotein (Ox-LDL), and activities of PON1/superoxide dismutase (SOD) activities in 49 gout patients (mean age 44.2 ± 7.0 years) and 42 healthy, age-matched controls (mean age 45.0 ± 9.3 years). PON1 was measured spectrophotometrically, MDA by thiobarbituric acid method, SOD by Griess reaction, and Ox-LDL by sandwich ELISA. Lipid and other biochemical parameters were determined by routine laboratory methods. In gout patients, PON1/SOD activities and MDA/Ox-LDL levels were 131.3 ± 25.3/75.3 ± 28.9 kU l−1 and 6.12 ± 1.67 nmol ml−1/690.1 ± 180.2 μg l−1, respectively. In controls, these were 172.5 ± 27.8/94.0 ± 26.3 kU l−1 and 4.10 ± 1.25 nmol ml−1/452.3 ± 152.1 μg l−1, respectively. Thus, in gout patients, there was a significant decrease in PON1 (P < 0.01) and SOD (P < 0.05) activities, and an increase in MDA (P < 0.01) and Ox-LDL (P < 0.01) levels compared with controls. PON1 activity correlated positively with SOD (P < 0.05), and negatively with MDA (P < 0.01) and Ox-LDL (P < 0.01). These results suggest that gout patients were in a state of oxidative stress and the protective effects of HDL against atherosclerosis maybe dependent on PON1 activity. These findings may explain in part the reported increase in cardiovascular mortality in gout patients.  相似文献   

7.
It has been reported that oxidative stress may play a role in the pathogenesis of dementia of the Alzheimer type (AD) and the cerebral ischemia which causes vascular dementia (VD). We measured malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) activities in blood samples from patients with AD and VD and in healthy non-demented controls (CTR) which similar ages to the patients, in order to evaluate the degree of oxidative stress in patients with AD and VD. A sample of 150 subjects consisting of 50 patients with AD; 50 patients with VD and 50 CTR, aged from 65 to 85 years on, was analyzed. Most of the changes observed were in SOD activity and MDA levels. Catalase activity were least affected. Significant differences were observed in SOD and GR activity between males and females in CRT and in patients with AD, but not in VD. We have found a decrease in antioxidant enzymes activities (SOD, CAT, GPx and GR) in patients with AD and VD and significant differences were observed between CRT and AD patients for ages from 65 to 74, 75 to 84 and from 85 years to 94 years in SOD activity and MDA levels (P < 0.001). MDA levels increase with age in VD, AD and CTR. No significant variation with respect to sex were detected, but significant variations in MDA levels were detected between CRT and patients with VD and AD (P < 0.001). We conclude that oxidative stress plays an important role in the brain damage for both AD and VD, being observed higher levels of oxidative stress for AD that for VD.  相似文献   

8.
In this article, oxidative stress and enzymic-non-enzymic antioxidants status were investigated in children with acute pneumonia. Our study included 28 children with acute pneumonia and 29 control subjects. The age ranged from 2 to 11 years (4.57+/-2.13 years) and 2 to 12 years (4.89+/-2.22 years) in the study and control groups, respectively. Whole blood malondialdehyde (MDA) and reduced glutathione (GSH), serum beta-carotene, retinol, vitamin C, vitamin E, catalase (CAT), ceruloplasmin (CLP), total bilirubin, erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels were studied in all subjects. There was a statistically significant difference between the groups for all parameters except for serum CAT. Whole blood MDA, serum CLP and total bilirubin levels were higher in the study group than those of the control group. However, SOD, GPx, beta-carotene, retinol, vitamin C, vitamin E and GSH levels were lower in the study group compared with the control group. All antioxidant vitamin activities were decreased in children with acute pneumonia. Our study demonstrated that oxidative stress was increased whereas enzymic and non-enzymic antioxidant activities were significantly decreased in children with acute pneumonia.  相似文献   

9.
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway.  相似文献   

10.
Caffeic acid phenethyl ester (CAPE), a flavonoid like compound, is one of the major components of honeybee propolis. It has been used in folk medicine for many years in Middle East countries. It was found to be a potent free radical scavenger and antioxidant recently. The aim of this study was to examine long-term applied 900 MHz emitting mobile phone-induced oxidative stress that promotes production of reactive oxygen species (ROS) and, was to investigate the role of CAPE on kidney tissue against the possible electromagnetic radiation (EMR)-induced renal impairment in rats. In particular, the ROS such as superoxide and nitric oxide (NO) may contribute to the pathophysiology of EMR-induced renal impairment. Malondialdehyde (MDA, an index of lipid peroxidation) levels, urinary N-acetyl-β-d-glucosaminidase (NAG, a marker of renal tubular injury) and nitric oxide (NO, an oxidant product) levels were used as markers of oxidative stress-induced renal impairment and the success of CAPE treatment. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in renal tissue were determined to evaluate the changes of antioxidant status. The rats used in the study were randomly grouped (10 each) as follows: i) Control group (without stress and EMR), ii) Sham-operated rats stayed without exposure to EMR (exposure device off), iii) Rats exposed to 900 MHz EMR (EMR group), and iv) A 900 MHz EMR exposed + CAPE treated group (EMR + CAPE group). In the EMR exposed group, while tissue MDA, NO levels and urinary NAG levels increased (p < 0.0001), the activities of SOD, CAT, and GSH-Px in renal tissue were reduced (p < 0.001). CAPE treatment reversed these effects as well (p < 0.0001, p < 0.001 respectively). In conclusion, the increase in NO and MDA levels of renal tissue, and in urinary NAG with the decrease in renal SOD, CAT, GSH-Px activities demonstrate the role of oxidative mechanisms in 900 MHz mobile phone-induced renal tissue damage, and CAPE, via its free radical scavenging and antioxidant properties, ameliorates oxidative renal damage. These results strongly suggest that CAPE exhibits a protective effect on mobile phone-induced and free radical mediated oxidative renal impairment in rats.  相似文献   

11.
Reactive oxygen species are produced during anaerobic exercise mostly by Fe ions released into plasma and endothelial/muscle xanthine oxidase activation that generates uric acid (UA) as the endpoint metabolite. Paradoxically, UA is considered a major antioxidant by virtue of being able to chelate pro-oxidative iron ions. This work aimed to evaluate the relationship between UA and plasma markers of oxidative stress following the exhaustive Wingate test. Plasma samples of 17 male undergraduate students were collected before, 5 and 60 min after maximal anaerobic effort for the measurement of total iron, haem iron, UA, ferric-reducing antioxidant activity in plasma (FRAP), and malondialdehyde (MDA, biomarker of lipoperoxidation). Iron and FRAP showed similar kinetics in plasma, demonstrating an adequate pro-/antioxidant balance immediately after exercise and during the recovery period (5–60 min). Slight variations of haem iron concentrations did not support a relevant contribution of rhabdomyolysis or haemolysis for iron overload following exercise. UA concentration did not vary immediately after exercise but rather increased 29% during the recovery period. Unaltered MDA levels were concomitantly measured. We propose that delayed UA accumulation in plasma is an auxiliary antioxidant response to post-exercise (iron-mediated) oxidative stress, and the high correlation between total UA and FRAP in plasma (R-Square = 0.636; p = 0.00582) supports this hypothesis.  相似文献   

12.

Aims

The aim of this study was to evaluate the antioxidant status and oxidative stress biomarkers in the blood of children and teenagers with Down syndrome.

Main methods

The analysis of enzymatic antioxidant defenses, such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione transferase (GST), non-enzymatic antioxidants, such as levels of reduced glutathione (GSH), uric acid (UA) and vitamin E, as well as oxidative damage indicators, such as protein carbonyls (PC) levels and lipoperoxidation (TBARS), of DS individuals (n = 20) compared to healthy controls (n = 18). Except the vitamin E was measured by HPLC, all other markers were measured spectrophotometrically.

Key Findings

Antioxidant enzymes analysis showed significant increases in the SOD (47.2%), CAT (24.7%) and GR (49.6%) activities in DS subjects. No significant difference in GPx activity was detected while GST activity (61.2%) was decreased, and both responses may be consequence of the depletion of GSH (24.9%) levels. There were no significant differences in TBARS levels, while PC levels showed decreased (31.7%) levels compared to healthy controls, which may be related to the increase (16.1%) found in serum UA. Levels of vitamin E showed no significant differences between DS individuals compared to controls.

Significance

The results revealed a systemic pro-oxidant status in DS individuals, evidenced by the increased activity of some important antioxidant enzymes, together with decreased GSH levels in whole blood and elevated UA levels in plasma, probably as an antioxidant compensation related to the redox imbalance in DS individuals.  相似文献   

13.
There are numerous reports on the effects of electromagnetic radiation (EMR) in various cellular systems. Melatonin and caffeic acid phenethyl ester (CAPE), a component of honeybee propolis, were recently found to be potent free radical scavengers and antioxidants. Mechanisms of adverse effects of EMR indicate that reactive oxygen species may play a role in the biological effects of this radiation. The present study was carried out to compare the efficacy of the protective effects of melatonin and CAPE against retinal oxidative stress due to long-term exposure to 900 MHz EMR emitting mobile phones. Melatonin and CAPE were administered daily for 60 days to the rats prior to their EMR exposure during our study. Nitric oxide (NO, an oxidant product) levels and malondialdehyde (MDA, an index of lipid peroxidation), were used as markers of retinal oxidative stress in rats following to use of EMR. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status in retinal tissue. Retinal levels of NO and MDA increased in EMR exposed rats while both melatonin and CAPE caused a significant reduction in the levels of NO and MDA. Likewise, retinal SOD, GSH-Px and CAT activities decreased in EMR exposed animals while melatonin and CAPE caused a significant increase in the activities of these antioxidant enzymes. Treatment of EMR exposed rats with melatonin or CAPE increased the activities of SOD, GSH-Px and CAT to higher levels than those of control rats. In conclusion, melatonin and CAPE reduce retinal oxidative stress after long-term exposure to 900 MHz emitting mobile phone. Nevertheless, there was no statistically significant difference between the efficacies of these two antioxidants against to EMR induced oxidative stress in rat retina. The difference was in only GSH-Px activity in rat retina. Melatonin stimulated the retinal GSH-Px activity more efficiently than CAPE did.  相似文献   

14.
In this article, the effects of increased light intensities on antioxidant metabolism during ex vitro establishment of Ulmus minor micropropagated plants are investigated. Three month old in vitro plants were acclimatized to ex vitro conditions in a climate chamber with two different light intensities, 200 μmol m−2 s−1 (high light, HL) and 100 μmol m−2 s−1 (low light, LL) during 40 days. Immediately after ex vitro transfer, the increase of both malondialdehyde (MDA) and electrolyte leakage in persistent leaves is indicative of oxidative stress. As the acclimatization continues, an upregulation of the superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) enzyme activities were also observed. Simultaneously, MDA content and membrane permeability stabilized, suggesting that the antioxidant enzymes decrease the deleterious effects of reactive oxygen species (ROS) generation. Unexpectedly, newly formed leaves presented a different pattern of antioxidative profile, with high levels of MDA and membrane leakage and low antioxidant enzyme activity. Despite these differences, both leaf types looked healthy (e.g. greenish, with no necrotic spots) during the whole acclimatization period. The results indicate that micropropagated U. minor plantlets develop an antioxidant enzyme system after ex vitro transfer and that, in general, LL treatment leads to lower oxidative stress. Moreover, new leaves tolerate higher levels of ROS without the need to activate the antioxidative pathway, which suggests that the environment at which leaves are exposed during its formation determinate their ability to tolerate ROS.  相似文献   

15.
Psoriasis is a chronic inflammatory skin disease characterized by excessive cellular replication. Apolipoproteins are genetically determined molecule whose role has been implied in cardiovascular pathology. Vascular adhesion protein?1 (VAP?1) is an adhesion molecule with an enzymatic activity that partakes in the migration process of lymphocytes into sites of inflammation. Our purpose was to evaluate the plasma lipid profiles, apolipoproteins (A1, B) and Lp (a) and VAP?1 in order to compare the lipid profile in psoriatic patients with non‐affected persons and correlation between VAP?1 and Lp (a). We determined serum concentrations of lipids, lipoproteins , apolipoproteins and VAP?1 in 90 patients with psoriasis and 90 age matched controls. Serum Lp (a), apo A1 and apo B were measured by immunoprecipitation assays, and the lipids and lipoproteins were measured by enzymatic methods.The VAP?1 were masured by ELISA method. The mean levels of total cholesterol, LDL, apo B and VAP?1 in patients with psoriasis were found to be significantly higher than those of healthy subjects (P<0.05. In psoriatic patients, elevation of VAP‐1 correlated with elevation of Lp (a) (p = 0.025). This study shows that high serum lipid level and VAP?1, is significantly more common in psoriasis. This fact may be responsible for higher prevalence of cardiovascular accident in psoriatic patients. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The purpose of this study was to elucidate the participation of plasma PON1 (paraoxonase activity [PON] and arylesterase activity [ARE]) in antioxidant defense in response to a single bout of maximal exercise. PON, ARE, lipid profile, lipid peroxidation (thiobarbituric acid reactive substances [TBARS]), total antioxidant status (ferric reducing ability of plasma [FRAP]), concentration of uric acid [UA], and total bilirubin (TBil) were determined in the plasma before, at the bout and 2 h after maximal exercise on a treadmill in young sportsmen. Chosen physiological parameters also were controlled during maximal exercise. Following maximal exercise, the unaltered level of TBARS and increased FRAP were registered. ARE increment was the highest (37.6%) of all measured variables but lasted for a short time. UA increment was lower than ARE but long-lasting and correlated with FRAP. PON activity increment was associated with the combined effect of body weight, lean, body mass index (BMI) and basal metabolic rate (BMR). We conclude that PON1 is a co-factor of the first line of antioxidant defense during maximal exercise. Its activity is associated with body composition and not the physical fitness of the subjects.  相似文献   

17.
We examined levels of malondialdehyde (MDA) (an end-product of lipid peroxidation) and paraoxonase (PON1) (an antioxidant enzyme) activity and PON1 phenotypes in people who were exposed to ionizing radiation for different time periods and doses. A total of 78 individuals (mean age 34 +/- 7 years) were included in the study. Fifty-one of them were radiology workers whereas the control group was composed of 27 healthy volunteers who had never worked in a radiology-related job. Paraoxon was used as substrate for measurement of PON1 activity levels (basal and NaCl-stimulated). Phenylacetate was used as substrate for measurement of arylesterase activity levels. Cumulative levels of serum NaCl-stimulated PON1/arylesterase activities were utilized for phenotypic differentiation. In radiology workers, three different phenotypes were determined based on paraoxonase/arylesterase ratio. The ratios were 1.09 +/- 0.30 for AA (homozygote low activity); 2.91 +/- 1.07 for AB (heterozygote activity) and 4.97 +/- 1.21 for BB (homozygote high activity). There was a statistically meaningful negative correlation between serum MDA levels and PON1 activity levels in all phenotypes (p < 0.05). PON1 activity levels were found to be 25-35% lower in people who were exposed to long-term ( > 5 years) radiation compared to controls. There was no statistically significant correlation between serum arylesterase activity and MDA levels in these subjects (r = -0.185, p > 0.05). PON1 activity levels were decreased whereas serum MDA levels were increased in individuals exposed to radiation for a long period. PON phenotypes of people employed in jobs which expose them to radiation should be determined and based on these findings they should be advised to avoid risk factors inducing oxidative stress, such as smoking, and to consume foods rich in vitamins and trace elements to increase their antioxidant capacity.  相似文献   

18.
BackgroundThe aim of this study was to determine the levels of lipid peroxidation (MDA) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in the blood serum of patients with cirrhosis and liver transplantation.MethodsIn this study, serum malondialdehyde acid (MDA) levels, superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT) activities were measured spectrophotometrically and compared to the results of the healthy control group.ResultsSOD, CAT and GSH activities were significantly decreased in the patient groups compared to the healthy control group (p<0.05). MDA levels were significantly higher in the patient group compared to the healthy control group (p <0.05).ConclusionsIn conclusion, this study demonstrated that oxidative stress may play an important role in the development of liver cirrhosis and in liver transplantation. This study is the first one to show how MDA, SOD, CAT and GSH levels change in liver cirrhosis and liver transplantation, while further studies are essential to investigate antioxidant enzymes and oxidative stress status in patients with cirrhosis and liver transplantation.  相似文献   

19.
Coumarins are a vast group of natural compounds and some of them possess antioxidant activities. The comparison of the antioxidant activity of some coumarins with various chemical molecular structure has not been investigated in previous studies. Therefore, this study was aimed to investigate the hepatoprotective effect against carbon tetrachloride (CCl4) -induced hepatic injury by coumarin (1,2-benzopyrone) and coumarin derivatives, esculetin (6,7-dihydroxycoumarin), scoparone (6,7-dimethoxycoumarin), and 4-methylumbelliferone (7-hyroxy-4-methyl) in male Sprague–Dawley rats. Product of lipid peroxidation, malondialdehyde (MDA), activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) were evaluated for oxidative stress in hepatic injury. Gamma glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH) were detected in plasma as a biomarker of hepatic injury. Significantly elevated levels of MDA and lowered levels of SOD and CAT activities were observed in liver of rats exposed to CCl4, when compared to control values. Similarly, administration of CCl4 increased LDH and GGT levels in serum. Pre-treatment of rats with esculetin (35 mg kg−1, orally) and scoparone (35 mg kg−1, orally) significantly prevented CCl4-induced decrease in MDA levels and increase in SOD and CAT, whereas 4-methylumbelliferone (35 mg kg−1) and coumarin (30 mg kg−1) had no effect against CCl4-induced rise in serum enzymes. Esculetin and scoparone also showed protective properties as was evidenced in reduced LDH and GGT levels in serum. The results of this study indicate that the chemical structures of coumarins play an important role in the prevention of oxidative stress.  相似文献   

20.
Caloric restriction (CR) has been shown to attenuate age-related oxidative damage and to improve major atherosclerotic risk factors. Paraoxonase 1 (PON1), an enzyme specifically associated with HDL containing apolipoproteins A-I and J, has been reported to prevent the proatherosclerotic effects of oxidized LDL. The aim of this study was to evaluate whether modulation of PON1 activity is part of the underlying CR mechanisms that attenuate the age-associated negative effects. Experimental groups were 1 year old rats of both genders subjected to 40% CR for 1 year and two ad libitum-fed groups, also including rats of both genders, euthanized at 6 months or 2 years. Aging impaired the serum lipid profile and increased lipid peroxidation, PON1 activities, and the content of both PON1 and apolipoprotein J in HDL, which suggests an HDL subfraction redistribution to protect LDL more effectively from oxidation. The CR-associated improved lipid profile and the decreased lipid peroxide levels would lead to the decreased arylesterase activity seen in old CR animals, suggesting that PON1 modulation is not an integral part of the main antioxidant mechanisms of CR but rather that CR would determine a more youthful and less oxidative situation in which the protection of LDL would be less necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号