首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The age‐related impairment in muscle function results in a drastic decline in motor coordination and mobility in elderly individuals. Regular physical activity is the only efficient intervention to prevent and treat this age‐associated degeneration. However, the mechanisms that underlie the therapeutic effect of exercise in this context remain unclear. We assessed whether endurance exercise training in old age is sufficient to affect muscle and motor function. Moreover, as muscle peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α) is a key regulatory hub in endurance exercise adaptation with decreased expression in old muscle, we studied the involvement of PGC‐1α in the therapeutic effect of exercise in aging. Intriguingly, PGC‐1α muscle‐specific knockout and overexpression, respectively, precipitated and alleviated specific aspects of aging‐related deterioration of muscle function in old mice, while other muscle dysfunctions remained unchanged upon PGC‐1α modulation. Surprisingly, we discovered that muscle PGC‐1α was not only involved in improving muscle endurance and mitochondrial remodeling, but also phenocopied endurance exercise training in advanced age by contributing to maintaining balance and motor coordination in old animals. Our data therefore suggest that the benefits of exercise, even when performed at old age, extend beyond skeletal muscle and are at least in part mediated by PGC‐1α.  相似文献   

2.
3.
4.
5.
Age‐related impairment of muscle function severely affects the health of an increasing elderly population. While causality and the underlying mechanisms remain poorly understood, exercise is an efficient intervention to blunt these aging effects. We thus investigated the role of the peroxisome proliferator‐activated receptor γ coactivator 1α (PGC‐1α), a potent regulator of mitochondrial function and exercise adaptation, in skeletal muscle during aging. We demonstrate that PGC‐1α overexpression improves mitochondrial dynamics and calcium buffering in an estrogen‐related receptor α‐dependent manner. Moreover, we show that sarcoplasmic reticulum stress is attenuated by PGC‐1α. As a result, PGC‐1α prevents tubular aggregate formation and cell death pathway activation in old muscle. Similarly, the pro‐apoptotic effects of ceramide and thapsigargin were blunted by PGC‐1α in muscle cells. Accordingly, mice with muscle‐specific gain‐of‐function and loss‐of‐function of PGC‐1α exhibit a delayed and premature aging phenotype, respectively. Together, our data reveal a key protective effect of PGC‐1α on muscle function and overall health span in aging.  相似文献   

6.
7.
8.
9.
10.
Inflammatory bowel disease is a kind of multi‐aetiological chronic disease that is driven by multidimensional factors. Hypoxia‐inducible factor‐1α (HIF‐1α) plays an important role in anti‐inflammatory and cellular responses to hypoxia. Previous studies have found that B or T‐cell‐specific HIF‐1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF‐1α in intestinal epithelial cells (IECs). In our study, HIF‐1αΔIEC mice were used to study the function of HIF‐1α in IECs. HIF‐1α was knocked down in Caco‐2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden‐1 (ZO‐1) and Occludin. The content of colon was harvested for high‐performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF‐1α played a protective role in dextran sulphate sodium‐induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF‐1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF‐1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF‐1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract.  相似文献   

11.
12.
Although it is known that the expression and activity of sirtuin 1 (Sirt1) decrease in the aged kidney, the role of interaction between Sirt1 and hypoxia‐inducible factor (HIF)‐1α is largely unknown. In this study, we investigated whether HIF‐1α could be a deacetylation target of Sirt1 and the effect of their interaction on age‐associated renal injury. Five‐week‐old (young) and 24‐month‐old (old) C57Bl/6J mice were assessed for their age‐associated changes. Kidneys from aged mice showed increased infiltration of CD68‐positive macrophages, higher expression of extracellular matrix (ECM) proteins, and more apoptosis than young controls. They also showed decreased Sirt1 expression along with increased acetylated HIF‐1α. The level of Bcl‐2/adenovirus E1B‐interacting protein 3, carbonic anhydrase 9, Snail, and transforming growth factor‐β1, which are regulated by HIF‐1α, was significantly higher in aged mice suggesting that HIF‐1α activity was increased. In HK‐2 cells, Sirt1 inhibitor sirtinol and siRNA‐mediated knockdown of Sirt1 enhanced apoptosis and ECM accumulation. During hypoxia, Sirt1 was down‐regulated, which allowed the acetylation and activation of HIF‐1α. Resveratrol, a Sirt1 activator, effectively prevented hypoxia‐induced production of ECM proteins, mitochondrial damage, reactive oxygen species generation, and apoptosis. The inhibition of HIF‐1α activity by Sirt1‐induced deacetylation of HIF‐1α was confirmed by Sirt1 overexpression under hypoxic conditions and by resveratrol treatment or Sirt1 overexpression in HIF‐1α‐transfected HK‐2 cells. Finally, we confirmed that chronic activation of HIF‐1α promoted apoptosis and fibrosis, using tubular cell‐specific HIF‐1α transgenic mice. Taken together, our data suggest that Sirt1‐induced deacetylation of HIF‐1α may have protective effects against tubulointerstitial damage in aged kidney.  相似文献   

13.
14.
15.
Cyclic strain is an important inducer of proliferation and migration of vascular smooth muscle cells (VSMCs) which are involved in vascular remodeling during hypertension. However, its mechanism remains to be elucidated. VSMCs of rat aorta were exposed to cyclic strains in vitro with defined parameters, the static, 5%‐strain (physiological) and 15%‐strain (pathological), at 1.25 Hz for 24 h respectively. Then the possible signaling molecules participated in strain‐induced VSMC migration and proliferation were investigated. The results showed that 15%‐strain significantly increased VSMC migration and proliferation in comparison with 5%‐strain. Expression of Rho GDP dissociation inhibitor alpha (Rho‐GDIα) was repressed by 15%‐strain, but expressions of phospho‐Rac1 and phospho‐p38 were increased. Expressions of phospho‐Akt and phospho‐ERK1/2 were similar between the static, 5%‐strain and 15%‐strain groups. Rho‐GDIα “knock‐down” by target siRNA transfection increased migration and proliferation of VSMCs, and up‐regulated phosphorylation of Rac1 and p38 in all groups. Rac1 “knock‐down” repressed migration and proliferation of VSMCs, down‐regulated phosphorylation of p38, but had no effect on Rho‐GDIα expression. When siRNAs of Rho‐GDIα and Rac1 were co‐transfected to VSMCs, the expressions of Rho‐GDIα and phospho‐Rac1 were both decreased, and the effects of Rho‐GDIα “knock‐down” were blocked. Rho‐GDIα “knock‐down” promoted while Rac1 “knock‐down” postponed the assembly of stress fibers and focal adhesions in static. The results demonstrate that the pathological cyclic strain might induce migration and proliferation of VSMCs via repressing expression of Rho‐GDIα, which subsequently verified phosphorylations of Rac1 and p38. J. Cell. Biochem. 109: 906–914, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Skeletal muscle dysfunction contributes to exercise limitation in COPD. In this study cigarette smoke exposure was hypothesized to increase expression of the inflammatory cytokine, TNF‐α, thereby suppressing PGC‐1α, and hence affecting down stream molecules that regulate oxygen transport and muscle function. Furthermore, we hypothesized that highly vascularized oxidative skeletal muscle would be more susceptible to cigarette smoke than less well‐vascularized glycolytic muscle. To test these hypotheses, mice were exposed to cigarette smoke daily for 8 or 16 weeks, resulting in 157% (8 weeks) and 174% (16 weeks) increases in serum TNF‐α. Separately, TNF‐α administered to C2C12 myoblasts was found to dose‐dependently reduce PGC‐1α mRNA. In the smoke‐exposed mice, PGC‐1α mRNA was decreased, by 48% in soleus and 23% in EDL. The vascular PGC‐1α target molecule, VEGF, was also down‐regulated, but only in the soleus, which exhibited capillary regression and an oxidative to glycolytic fiber type transition. The apoptosis PGC‐1α target genes, atrogin‐1 and MuRF1, were up‐regulated, and to a greater extent in the soleus than EDL. Citrate synthase (soleus—19%, EDL—17%) and β‐hydroxyacyl CoA dehydrogenase (β‐HAD) (soleus—22%, EDL—19%) decreased similarly in both muscle types. There was loss of body and gastrocnemius complex mass, with rapid soleus but not EDL fatigue and diminished exercise endurance. These data suggest that in response to smoke exposure, TNF‐α‐mediated down‐regulation of PGC‐1α may be a key step leading to vascular and myocyte dysfunction, effects that are more evident in oxidative than glycolytic skeletal muscles. J. Cell. Physiol. 222: 320–327, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
18.
Hypoxia, which activates the hypoxia inducible factor 1α (HIF‐1α), is an essential feature of retinoblastoma (RB) and contributes to poor prognosis and resistance to conventional therapy. In this study, the effect of HIF‐1α knockdown by small interfering RNA (siRNA) on cell proliferation, apoptosis, and apoptotic pathways of human Y‐79 RB cells was first investigated. Exposure to hypoxia induced the increased expression of HIF‐1α both in mRNA and protein levels. Then, knockdown of HIF‐1α by siRNAHIF‐1α resulted in inhibition of cell proliferation and induced cell apoptosis in human Y‐79 RB cells under both normoxic and hypoxic conditions, with hypoxic conditions being more sensitive. Furthermore, knockdown of HIF‐1α could enhance hypoxia‐induced slight increase of Bax/Bcl‐2 ratio and activate caspase‐9 and caspase‐3. These results together indicated that suppression of HIF‐1α expression may be a promising strategy for the treatment of human RB in the future.  相似文献   

19.
20.
Galectin‐1/LGALS1, a newly recognized angiogenic factor, contributes to the pathogenesis of diabetic retinopathy (DR). Recently, we demonstrated that glucocorticoids suppressed an interleukin‐1β‐driven inflammatory pathway for galectin‐1 expression in vitro and in vivo. Here, we show glucocorticoid‐mediated inhibitory mechanism against hypoxia‐inducible factor (HIF)‐1α‐involved galectin‐1 expression in human Müller glial cells and the retina of diabetic mice. Hypoxia‐induced increases in galectin‐1/LGALS1 expression and promoter activity were attenuated by dexamethasone and triamcinolone acetonide in vitro. Glucocorticoid application to hypoxia‐stimulated cells decreased HIF‐1α protein, but not mRNA, together with its DNA‐binding activity, while transactivating TSC22 domain family member (TSC22D)3 mRNA and protein expression. Co‐immunoprecipitation revealed that glucocorticoid‐transactivated TSC22D3 interacted with HIF‐1α, leading to degradation of hypoxia‐stabilized HIF‐1α via the ubiquitin‐proteasome pathway. Silencing TSC22D3 reversed glucocorticoid‐mediated ubiquitination of HIF‐1α and subsequent down‐regulation of HIF‐1α and galectin‐1/LGALS1 levels. Glucocorticoid treatment to mice significantly alleviated diabetes‐induced retinal HIF‐1α and galectin‐1/Lgals1 levels, while increasing TSC22D3 expression. Fibrovascular tissues from patients with proliferative DR demonstrated co‐localization of galectin‐1 and HIF‐1α in glial cells partially positive for TSC22D3. These results indicate that glucocorticoid‐transactivated TSC22D3 attenuates hypoxia‐ and diabetes‐induced retinal glial galectin‐1/LGALS1 expression via HIF‐1α destabilization, highlighting therapeutic implications for DR in the era of anti‐vascular endothelial growth factor treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号