首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: Very limited information regarding the cardiac molecular mechanism in obesity is available. The purpose of this study was to evaluate the cardiac Fas receptor‐dependent (type I) apoptotic pathway in obese Zucker rats. Research Methods and Procedures: Sixteen obese Zucker rats were studied at 5 to 6 months of age, and 16 age‐matched lean Zucker rats served as controls. Heart weight index, myocardial architecture, key components of the Fas receptor‐dependent apoptotic pathway, apoptotic activity, and fibrosis in the excised left ventricle of rats were measured by weight scales, hematoxylin and eosin staining, Western blotting, TUNEL assay, and Masson trichrome staining. Results: Body weight, whole heart weight, left ventricular weight, ratio of whole heart weight to tibia length, percentage of TUNEL‐positive cardiac myocytes, and percentage of cardiac fibrosis were significantly increased in the obese group. Cardiomyocyte disarray and increased cardiac interstitial space were observed in obese rats. Protein levels of Fas ligand, Fas death receptors, and Fas‐associated Death Domain were all significantly increased in the obese group. In addition, pro‐caspase‐8 and pro‐caspase‐3 were significantly decreased, whereas activated caspase‐8 and activated caspase‐3 were significantly increased in the obese group, which implies that pro‐forms of caspase‐8 and caspase‐3 were cleaved into active‐forms caspase‐8 and caspase‐3. Conclusions: Cardiac Fas receptor‐dependent apoptotic pathways were more activated in obese rats’ hearts, which may provide one of the possible apoptotic mechanisms for developing cardiac abnormality in obesity.  相似文献   

2.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

3.
4.
5.
Notechis scutatus scutatus notexin induced apoptotic death of SK‐N‐SH cells accompanied with downregulation of Bcl‐xL, upregulation of Bak, mitochondrial depolarization, and ROS generation. Upon exposure to notexin, Ca2+‐mediated JNK and p38 MAPK activation were observed in SK‐N‐SH cells. Production of ROS was a downstream event followed by Ca2+‐mediated mitochondrial alteration. Notexin‐induced cell death, mitochondrial depolarization, and ROS generation were suppressed by SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor). Moreover, phospho‐p38 MAPK and phospho‐JNK were proved to be involved in Bcl‐xL degradation, and overexpression of Bcl‐xL attenuated the cytotoxic effect of notexin. Bak upregulation was elicited by p38 MAPK‐mediated ATF‐2 activation and JNK‐mediated c‐Jun activation. Suppression of Bak upregulation by ATF‐2 siRNA or c‐Jun siRNA attenuated notexin‐evoked mitochondrial depolarization and rescued viability of notexin‐treated cells. Taken together, our data indicate that notexin‐induced apoptotic death of SK‐N‐SH cells is mediated through mitochondrial alteration triggering by Ca2+‐evoked p38 MAPK/ATF‐2 and JNK/c‐Jun signaling pathways. J. Cell. Physiol. 222:177–186, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
l ‐Glutamine (Gln) starvation rapidly triggers apoptosis in Sp2/0‐Ag14 (Sp2/0) murine hybridoma cells. Here, we report on the role played by the stress‐activated kinase p38 mitogen‐activated protein kinase (MAPK) in this process. p38 activation was detected 2 h after Gln withdrawal and, although treatment with the p38 inhibitor SB203580 did not prevent caspase activation in Gln‐starved cells, it reduced the occurrence of both nuclear condensation/fragmentation and apoptotic body formation. Similarly, transfection of Sp2/0 cells with a dominant negative p38 MAPK reduced the incidence of nuclear pyknosis and apoptotic body formation following 2 h of Gln starvation. Gln withdrawal‐induced apoptosis was blocked by the overexpression of the anti‐apoptotic protein Bcl‐xL or by the caspase inhibitor Z‐VAD‐fmk. Interestingly, Bcl‐xL expression inhibited p38 activation, but Z‐VAD‐fmk treatment did not, indicating that activation of this MAPK occurs downstream of mitochondrial dysfunction and is independent of caspases. Moreover, the anti‐oxidant N‐acetyl‐l ‐cysteine prevented p38 phosphorylation, showing that p38 activation is triggered by an oxidative stress. Altogether, our findings indicate that p38 MAPK does not contribute to the induction of apoptosis in Gln‐starved Sp2/0 cells. Rather, Gln withdrawal leads to mitochondrial dysfunction, causing an oxidative stress and p38 activation, the latter contributing to the formation of late morphological features of apoptotic Sp2/0 cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Fas/Fas ligand system triggers apoptosis in many cell types. Bcl‐XL overexpresion antagonizes Fas/Fas ligand‐mediated cell death. The mechanism by which Bcl-XL influences Fas‐mediated cell death is unclear. We have found that microtubule‐damaging drugs (e.g. Paclitaxel) induce apoptosis in a Fas/FasL‐dependent manner. Inhibition of Fas/FasL pathway by anti‐FasL antibody, mutant Fas or a dominant negative FADD blocks paclitaxel‐induced apoptosis. Paclitaxel induced apoptosis through activation of both caspase‐8 and caspase‐3. Overexpression of Bcl‐XL leads to inhibition of paclitaxel‐induced FasL expression and apoptosis. Bcl‐XL prevents the nuclear translocation of NFAT (nuclear factor of activated T lymphocytes) by inhibiting the activation of calcineurin, a calcium‐dependent phosphatase that must dephosphorylate NFAT for it to move to the nucleus. The loop domain in Bcl‐XL can suppress the anti‐apoptotic function of Bcl‐XL and may be a target for regulatory post‐translational modifications. Upon phosphorylation, Bcl‐XL loses its ability to bind with calcineurin. Without NFAT nuclear translocation, the FasL gene is not transcribed. Thus, paclitaxel and other drugs that disturb microtubule function kill cells, at least in part, through the induction of FasL, and Bcl‐XL‐mediated resistance to these agents is related to failure to induce FasL expression.  相似文献   

9.
Myeloproliferative neoplasms are divided into essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). Although ruxolitinib was proven to be effective in reducing symptoms, patients rarely achieve complete molecular remission. Therefore, it is relevant to identify new therapeutic targets to improve the clinical outcome of patients. Bcl‐xL protein, the long isoform encoded by alternative splicing of the Bcl‐x gene, acts as an anti‐apoptotic regulator. Our study investigated the role of Bcl‐xL as a marker of severity of MPN and the possibility to target Bcl‐xL in patients. 129 MPN patients and 21 healthy patients were enrolled in the study. We analysed Bcl‐xL expression in leucocytes and in enriched CD34+ and CD235a+ cells. Furthermore, ABT‐737, a Bcl‐xL inhibitor, was tested in HEL cells and in leucocytes from MPN patients. Bcl‐xL was found progressively over‐expressed in cells from ET, PV and PMF patients, independently by JAK2 mutational status. Moreover, our data indicated that the combination of ABT‐737 and ruxolitinib resulted in a significantly higher apoptotic rate than the individual drug. Our study suggests that Bcl‐xL plays an important role in MPN independently from JAK2 V617F mutation. Furthermore, data demonstrate that targeting simultaneously JAK2 and Bcl‐xL might represent an interesting new approach.  相似文献   

10.
In developing rats, sex differences in the number of apoptotic cells are found in the central division of the medial preoptic nucleus (MPNc), which is a significant component of the sexually dimorphic nucleus of the preoptic area, and in the anteroventral periventricular nucleus (AVPV). Specifically, male rats have more apoptotic cells in the developing AVPV, whereas females have more apoptotic cells in the developing MPNc. To determine the mechanisms for the sex differences in apoptosis in these nuclei, we compared the expression of the Bcl‐2 family members and active caspase‐3 in postnatal female and male rats. Western blot analyses for the Bcl‐2 family proteins were performed using preoptic tissues isolated from the brain on postnatal day (PD) 1 (day of birth) or on PD8. In the AVPV‐containing tissues of PD1 rats, there were significant sex differences in the level of Bcl‐2 (female > male) and Bax (female < male) proteins, but not of Bcl‐xL or Bad proteins. In the MPNc‐containing tissues of PD8 rats, there were significant sex differences in the protein levels for Bcl‐2 (female < male), Bax (female > male), and Bad (female < male), but not for Bcl‐xL. Immunohistochemical analyses showed significant sex differences in the number of active caspase‐3‐immunoreactive cells in the AVPV on PD1 (female < male) and in the MPNc on PD8 (female > male). We further found that active caspase‐3‐immunoreactive cells of the AVPV and MPNc were immunoreactive for NeuN, a neuronal marker. These results suggest that there are sex differences in the induction of apoptosis via the mitochondrial pathway during development of the AVPV and MPNc. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

11.
Photodynamic therapy (PDT) for tumors is based on the tumor‐selective accumulation of a photosensitizer, protoporphyrin IX (PpIX), followed by irradiation with visible light. However, the molecular mechanism of cell death caused by PDT has not been fully elucidated. The 5‐aminolevulinic acid (ALA)‐based photodynamic action (PDA) was dependent on the accumulation of PpIX, the level of which decreased rapidly by eliminating ALA from the incubation medium in human histiocytic lymphoma U937 cells. PDA induced apoptosis characterized by lipid peroxidation, increase in Bak and Bax/Bcl‐xL, decrease in Bid, membrane depolarization, cytochrome c release, caspase‐3 activation, phosphatidylserine (PS) externalization. PDT‐induced cell death seemed to occur predominantly via apoptosis through distribution of PpIX in mitochondria. These cell death events were enhanced by ferrochelatase inhibitors. These results indicated that ALA‐based‐PDA induced apoptotic cell death through a mitochondrial pathway and that ferrochelatase inhibitors might enhanced the effect of PDT for tumors even at low concentrations of ALA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Phospholipase A2 (PLA2) from Naja naja atra venom induced apoptotic death of human leukemia K562 cells. Degradation of procaspases, production of tBid, loss of mitochondrial membrane potential, Bcl‐2 degradation, mitochondrial translocation of Bax, and cytochrome c release were observed in PLA2‐treated cells. Moreover, PLA2 treatment increased Fas and FasL protein expression. Upon exposure to PLA2, activation of p38 MAPK (mitogen‐activated protein kinase) and JNK (c‐Jun NH2‐terminal kinase) was found in K562 cells. SB202190 (p38 MAPK inhibitor) pretreatment enhanced cytotoxic effect of PLA2 and led to prolonged JNK activation, but failed to affect PLA2‐induced upregulation of Fas and FasL protein expression. Sustained JNK activation aggravated caspase8/mitochondria‐dependent death pathway, downregulated Bcl‐2 expression and increased mitochondrial translocation of Bax. SP600125 (JNK inhibitor) abolished the cytotoxic effect of PLA2 and PLA2‐induced autocrine Fas death pathway. Transfection ASK1 siRNA and overexpression of dominant negative p38α MAPK proved that ASK1 pathway was responsible for PLA2‐induced p38 MAPK and JNK activation and p38α MAPK activation suppressed dynamically persistent JNK activation. Downregulation of FADD abolished PLA2‐induced procaspase‐8 degradation and rescued viability of PLA2‐treated cells. Taken together, our results indicate that JNK‐mediated autocrine Fas/FasL apoptotic mechanism and modulation of Bcl‐2 family proteins are involved in PLA2‐induced death of K562 cells. J. Cell. Biochem. 109: 245–254, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
Mechanosensory hair cells of the inner ear are especially sensitive to death induced by exposure to aminoglycoside antibiotics. This aminoglycoside‐induced hair cell death involves activation of an intrinsic program of cellular suicide. Aminoglycoside‐induced hair cell death can be prevented by broad‐spectrum inhibition of caspases, a family of proteases that mediate apoptotic and programmed cell death in a wide variety of systems. More specifically, aminoglycoside‐induced hair cell death requires activation of caspase‐9. Caspase‐9 activation requires release of mitochondrial cytochrome c into the cytoplasm, indicating that aminoglycoside‐induced hair cell death is mediated by the mitochondrial (or “intrinsic”) cell death pathway. The Bcl‐2 family of pro‐apoptotic and anti‐apoptotic proteins are important upstream regulators of the mitochondrial apoptotic pathway. Bcl‐2 is an anti‐apoptotic protein that localizes to the mitochondria and promotes cell survival by preventing cytochrome c release. Here we have utilized transgenic mice that overexpress Bcl‐2 to examine the role of Bcl‐2 in neomycin‐induced hair cell death. Overexpression of Bcl‐2 significantly increased hair cell survival following neomycin exposure in organotypic cultures of the adult mouse utricle. Furthermore, Bcl‐2 overexpression prevented neomycin‐induced activation of caspase‐9 in hair cells. These results suggest that the expression level of Bcl‐2 has important effects on the pathway(s) important for the regulation of aminoglycoside‐induced hair cell death. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 89–100, 2004  相似文献   

15.
Lenalidomide is a potent immunomodulatory agent capable of downregulating proinflammatory cytokines such as tumor necrosis factor‐α (TNF‐α) and upregulating anti‐inflammatory cytokines. Lenalidomide has been shown to elicit cardiovascular effects, although its impact on cardiac function remains obscure. This study was designed to examine the effect of lenalidomide on cardiac contractile function in ob/ob obese mice. C57BL lean and ob/ob obese mice were given lenalidomide (50 mg/kg/day, p.o.) for 3 days. Body fat composition was assessed by dual‐energy X‐ray absorptiometry. Cardiomyocyte contractile and intracellular Ca2+ properties were evaluated. Expression of TNF‐α, interleukin‐6 (IL‐6), Fas, Fas ligand (FasL), the short‐chain fatty acid receptor GPR41, the NFκB regulator IκB, endoplasmic reticulum (ER) stress, the apoptotic protein markers Bax, Bcl‐2, caspase‐8, tBid, cytosolic cytochrome C, and caspase‐12; and the stress signaling molecules p38 and extracellular signal‐regulated kinase (ERK) were evaluated by western blot. ob/ob mice displayed elevated serum TNF‐α and IL‐6 levels, fat composition and glucose intolerance, the effects of which except glucose intolerance and fat composition were attenuated by lenalidomide. Cardiomyocytes from ob/ob mice exhibited depressed peak shortening (PS) and maximal velocity of shortening/relengthening, prolonged time‐to‐PS and time‐to‐90% relengthening as well as intracellular Ca2+ mishandling, which were ablated by lenalidomide. Western blot analysis revealed elevated levels of TNF‐α, IL‐6, Fas, Bip, Bax, caspase‐8, tBid, cleaved caspase‐3 caspase‐12, cytochrome C, phosphorylation of p38, and ERK in ob/ob mouse hearts, the effects of which with the exception of Bip, Bax, and caspase‐12 were alleviated by lenalidomide. Taken together, these data suggest that lenalidomide is protective against obesity‐induced cardiomyopathy possibly through antagonism of cytokine/Fas‐induced activation of stress signaling and apoptosis.  相似文献   

16.
Beta cell apoptosis is a hallmark of diabetes. Since we have previously shown that galectin‐3 deficient (LGALS3?/?) mice are relatively resistant to diabetes induction, the aim of this study was to examine whether beta cell apoptosis depends on the presence of galectin‐3 and to delineate the underlying mechanism. Deficiency of galectin‐3, either hereditary or induced through application of chemical inhibitors, β‐lactose or TD139, supported survival and function of islet beta cells compromised by TNF‐α + IFN‐γ + IL‐1β stimulus. Similarly, inhibition of galectin‐3 by β‐lactose or TD139 reduced cytokine‐triggered apoptosis of beta cells, leading to conclusion that endogenous galectin‐3 propagates beta apoptosis in the presence of an inflammatory milieu. Exploring apoptosis‐related molecules expression in primary islet cells before and after treatment with cytokines we found that galectin‐3 ablation affected the expression of major components of mitochondrial apoptotic pathway, such as BAX, caspase‐9, Apaf, SMAC, caspase‐3, and AIF. In contrast, anti‐apoptotic molecules Bcl‐2 and Bcl‐XL were up‐regulated in LGALS3?/? islet cells when compared to wild‐type (WT) counterparts (C57BL/6), resulting in increased ratio of anti‐apoptotic versus pro‐apoptotic molecules. However, Fas‐triggered apoptotic pathway as well as extracellular signal‐regulated kinase 1/2 (ERK1/2) was not influenced by LGALS‐3 deletion. All together, these results point to an important role of endogenous galectin‐3 in beta cell apoptosis in the inflammatory milieu that occurs during diabetes pathogenesis and implicates impairment of mitochondrial apoptotic pathway as a key event in protection from beta cell apoptosis in the absence of galectin‐3. J. Cell. Physiol. 228: 1568–1576, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
We have previously shown that inhibition of the proteolytic activity of the proteasome induces apoptosis and suppresses essential functions of activated human CD4+ T cells, and we report now the detailed mechanisms of apoptosis following proteasome inhibition in these cells. Here we show that proteasome inhibition by bortezomib activates the mitochondrial pathway of apoptosis in activated CD4+ T cells by disrupting the equilibrium of pro‐apoptotic and anti‐apoptotic proteins at the outer mitochondrial membrane (OMM) and by inducing the generation of reactive oxygen species (ROS). Proteasome inhibition leads to accumulation of pro‐apoptotic proteins PUMA, Noxa, Bim and p53 at the OMM. This event provokes mitochondrial translocation of activated Bax and Bak homodimers, which induce loss of mitochondrial membrane potential (ΔΨm). Breakdown of ΔΨm is followed by rapid release of pro‐apoptotic Smac/DIABLO and HtrA2 from mitochondria, whereas release of cytochrome c and AIF is delayed. Cytoplasmic Smac/DIABLO and HtrA2 antagonize IAP‐mediated inhibition of partially activated caspases, leading to premature activation of caspase‐3 followed by activation of caspase‐9. Our data show that proteasome inhibition triggers the mitochondrial pathway of apoptosis by activating mutually independent apoptotic pathways. These results provide novel insights into the mechanisms of apoptosis induced by proteasome inhibition in activated T cells and underscore the future use of proteasome inhibitors for immunosuppression. J. Cell. Biochem. 108: 935–946, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The mechanism whereby mitochondrial DNA (mtDNA) is released into the cytosol and activates the cGAS/STING inflammatory pathway during Bax/Bax‐mediated apoptosis is unknown. In this issue, Riley et al ( 2018 ) report that widening of Bax and Bak pores on the mitochondrial outer membrane (MOM) during apoptosis allows the extrusion of the mitochondrial inner membrane (MIM) into the cytosol and its permeabilization to release mtDNA independently of caspases. In this scenario, Bax and Bak emerge as key modulators of the apoptotic immunogenic response.  相似文献   

19.
Anoxic and metabolic stresses in large‐scale cell culture during biopharmaceutical production can induce apoptosis. Strategies designed to ameliorate the problem of apoptosis in cell culture have focused on mRNA knockdown of pro‐apoptotic proteins and over‐expression of anti‐apoptotic ones. Apoptosis in cell culture involves mitochondrial permeabilization by the pro‐apoptotic Bak and Bax proteins; activity of either protein is sufficient to permit apoptosis. We demonstrate here the complete and permanent elimination of both the Bak and Bax proteins in combination in Chinese hamster ovary (CHO) cells using zinc‐finger nuclease‐mediated gene disruption. Zinc‐finger nuclease cleavage of BAX and BAK followed by inaccurate DNA repair resulted in knockout of both genes. Cells lacking Bax and Bak grow normally but fail to activate caspases in response to apoptotic stimuli. When grown using scale‐down systems under conditions that mimic growth in large‐scale bioreactors they are significantly more resistant to apoptosis induced by starvation, staurosporine, and sodium butyrate. When grown under starvation conditions, BAX‐ and BAK‐deleted cells produce two‐ to fivefold more IgG than wild‐type CHO cells. Under normal growth conditions in suspension culture in shake flasks, double‐knockout cultures achieve equal or higher cell densities than unmodified wild‐type cultures and reach viable cell densities relevant for large‐scale industrial protein production. Biotechnol. Bioeng. 2010; 105: 330–340. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Background: nocturnal sustained hypoxia during sleeping time has been reported in severe obesity, but no information regarding the cardiac molecular mechanism in the coexistence of nocturnal sustained hypoxia and obesity is available. This study evaluates whether the coexistence of nocturnal sustained hypoxia and obesity will increase cardiac Fas death receptor and mitochondrial-dependent apoptotic pathway. Methods: 32 lean and 32 obese 5- to 6-mo-old rats with or without nocturnal sustained hypoxia were studied and assigned to one of four subgroups: normoxia lean (NL), normoxia obese (NO), hypoxia lean (HL, 12% O(2) for 8 h and 21% O(2) 16 h/day, 1 wk), and hypoxia obese (HO). The heart weight index, tail cuff plethysmography, echocardiography, hematoxylin-eosin staining, TUNEL assays, Western blotting, and RT-PCR were performed. Results: systolic and diastolic blood pressures in HO were higher than those in NL, and fractional shortening in HO was reduced compared with others. The whole heart weight, the left ventricular weight, the abnormal myocardial architecture, and TUNEL-positive apoptotic cells, as well as the activity of cardiac Fas-dependent and mitochondrial-dependent apoptotic pathway, were significantly increased in obese group or nocturnal sustained hypoxia group and were further increased when obesity and nocturnal sustained hypoxia coexisted, the evidence for which is based on decreases in an anti-apoptotic protein Bcl2 level and Bid and increases in Fas, FADD, pro-apoptotic Bad, BNIP3, cytosolic cytochrome c, activated caspase-8, activated caspase-9, and activated caspase-3. Conclusions: The cardiac Fas receptor- and mitochondrial-dependent apoptotic pathways were more activated in obesity with coexistent nocturnal sustained hypoxia, which may represent one possible apoptotic mechanism for the development of heart failure in obesity with nocturnal sustained hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号