首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Engineered muscle may eventually be used as a treatment option for patients suffering from loss of muscle function. The metabolic and contractile function of engineered muscle has not been well described; therefore, the purpose of this experiment was to study glucose transporter content and glucose uptake in engineered skeletal muscle constructs called myooids. Glucose uptake by way of 2-deoxyglucose and GLUT-1 and GLUT-4 transporter protein content was measured in basal and insulin-stimulated myooids that were engineered from soleus muscles of female Sprague-Dawley rats. There was a significant increase in the basal 2-deoxyglucose uptake of myooids compared with adult control (fivefold), contraction-stimulated (3.4-fold), and insulin-stimulated (threefold) soleus muscles (P = 0.0001, 0.0001, and 0.0001, respectively). In addition, there was a significant increase in the insulin-stimulated 2-deoxyglucose uptake of myooids compared with adult control soleus muscles in basal conditions (6.5-fold) and adult contraction-stimulated (4.5-fold) and insulin- stimulated (3.9-fold) soleus muscles (P = 0.0001, 0.0001, and 0.0001, respectively). There was a significant 30% increase in insulin-stimulated compared with basal 2-deoxyglucose uptake in the myooids. The myooid GLUT-1 protein content was 820% of the adult control soleus muscle, whereas the GLUT-4 protein content was 130% of the control soleus muscle. Myooid GLUT-1 protein content was 6.3-fold greater than GLUT-4 protein content, suggesting that the glucose transport of the engineered myooids is similar in several respects to that observed in both fetal and denervated skeletal muscle tissue.  相似文献   

2.
3.
During the life span, phenotypic and structural modifications on skeletal muscle contribute to a reduction on glucose uptake either in basal state or triggered by insulin, but the underlying mechanisms for this decline are not entirely identified. A reduction in the expression of skeletal muscle glucose transporters (GLUTs), glucose transporter type 1 (GLUT1) and glucose transporter type 4 (GLUT4), has been associated to such phenomena, but unlike the case of insulin, only few studies have addressed the effect of age on muscle-contraction-induced glucose uptake. The aim of the study was to investigate the influence of age on GLUT1 and GLUT4 expression in skeletal muscle and its relation to the glucose uptake induced by muscle contraction. For this purpose, soleus muscle from Wistar rats aged 4, 10, 22 and 42 weeks were isolated and electrically stimulated (30 min, 10 Hz, 20 V, 0.2 ms). After stimulation, glucose uptake and GLUT1 and GLUT4 expression and localisation were evaluated. Muscle contraction caused an increase in glucose uptake in all studied groups. In addition, the absolute rates of glucose uptake were negatively correlated with age. The expression of GLUT4 was lower in older animals, whereas no relation between age and GLUT1 expression was found. Immunohistochemistry confirmed the ontogenic effect on GLUT4 expression and suggested an age-related modification on GLUT1 distribution within the muscle fibres; for instance, this protein seems to be present mainly out of the sarcoplasm. The present findings demonstrate that the ability of muscle contraction to increase glucose uptake is not influenced by age, whereas glucose uptake under basal conditions decreases with age.  相似文献   

4.
We have previously reported that thiazolidinediones (TZDs) are able to restore the tyrosine phosphorylation of insulin receptor and insulin receptor substrate-1, activation of phosphatidyl inositol 3-kinase and glucose uptake in insulin resistant skeletal muscle cells [21]. In this study, we investigated the effects of insulin stimulation and TZDs on the role of mitogen-activated protein kinase (MAPK) in insulin resistant skeletal muscle cells. All the three MAPKs [extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK] were activated by insulin in the sensitive skeletal muscle cells. In contrast, activation of p38 MAPK was impaired in insulin resistant cells, where as ERK and JNK were activated by insulin. Treatment with TZDs resulted in the restoration of p38 MAPK activity in insulin resistant cells. The treatment of cells with p38 MAPK inhibitor, SB203580, blocked the insulin stimulated glucose uptake in sensitive as well as resistant cells and it also prevented the activation of p38 by insulin. These results suggest the potential involvement of p38 as well as the mechanistic role of TZDs in insulin resistance.  相似文献   

5.
Summary A Na+-sensitive uptake of 3-O-methylglucose (3-O-MG), a nonmetabolized sugar, was characterized in frog skeletal muscle. A removal of Na+ from the bathing solution reduced 3-O-MG uptake, depending on the amount of Na+ removed. At a 3-O-MG concentration of 2mm, the Na+-sensitive component of uptake in Ringer's solution was estimated to be about 26% of the total uptake. The magnitude of Na+-sensitive component sigmoidally increased with an increase of 3-O-MG in bathing solution, whereas in Na+-free Ringer's solution the uptake was proportional to the concentration. The half saturation of the Na+-sensitive component was at a 3-O-MG concentration of about 13mm, and the Hill coefficient was 1.4 to 1.6. Phlorizin (5mm), a potent inhibitor specific for Na+-coupled glucose transport, reduced the uptake in a solution containing Na+ to the level in Na+-free Ringer's solution. Glucose of concentrations higher than 20mm suppressed 3-O-MG uptake to a level slightly lower than that in Na+-free Ringer's solution. These observations indicate that there are Na+-coupled sugar transport systems in frog skeletal muscle which are shared by both glucose and 3-O-MG.  相似文献   

6.
Nitric oxide (NO) has been implicated as an important signaling molecule in the insulin-independent, contraction-mediated glucose uptake pathway and may represent a novel strategy for blood glucose control in patients with type 2 diabetes (T2DM). The current study sought to determine whether the NO donor, sodium nitroprusside (SNP) increases glucose uptake in primary human skeletal muscle cells (HSkMC) derived from both healthy individuals and patients with T2DM. Vastus lateralis muscle cell cultures were derived from seven males with T2DM (aged 54 ± 2 years, BMI 31.7 ± 1.2 kg/m2, fasting plasma glucose 9.52 ± 0.80 mmol/L) and eight healthy individuals (aged 46 ± 2 years, BMI 27.1 ± 1.5 kg/m2, fasting plasma glucose 4.69 ± 0.12 mmol/L). Cultures were treated with both therapeutic (0.2 and 2 μM) and supratherapeutic (3, 10 and 30 mM) concentrations of SNP. An additional NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) was also examined at a concentration of 50 μM. Glucose uptake was significantly increased following both 30 and 60 min incubations with the supratherapeutic SNP treatments (P = 0.03) but not the therapeutic SNP doses (P = 0.60) or SNAP (P = 0.54). There was no difference in the response between the healthy and T2DM cell lines with any treatment or dose. The current study demonstrates that glucose uptake is elevated by supratherapeutic, but not therapeutic doses of SNP in human primary skeletal muscle cells derived from both healthy volunteers and patients with T2D. These data confirm that nitric oxide donors have potential therapeutic utility to increase glucose uptake in humans, but that SNP only achieves this in supratherapeutic doses. Further study to delineate mechanisms and the therapeutic window is warranted.  相似文献   

7.
There is a growing demand for a system in the field of sarcopenia and diabetes research that could be used to evaluate the effects of functional food ingredients that enhance muscle mass/contractile force or muscle glucose uptake. In this study, we developed a new type of in vitro muscle incubation system that systemizes an apparatus for muscle incubation, using an electrode, a transducer, an incubator, and a pulse generator in a compact design. The new system enables us to analyze the muscle force stimulated by the electric pulses and glucose uptake during contraction and it may thus be a useful tool for analyzing the metabolic changes that occur during muscle contraction. The system may also contribute to the assessments of new food ingredients that act directly on skeletal muscle in the treatment of sarcopenia and diabetes.  相似文献   

8.
Based on recent studies showing that PLCgamma associates to insulin receptor, we investigated its role in insulin stimulation of glucose transport in brown adipocytes. Insulin stimulation induced rapid PLCgamma association to phosphorylated insulin receptor, and activation of PLCgamma, as assessed by the mobilization of Ca(2+) from intracellular stores and by the production of the second messenger DAG. Both events are dependent on activation of PI3-kinase. Inhibition of PLCgamma activity either with the chemical compound U73122 or with an inhibitor peptide precluded insulin stimulation of glucose uptake, GLUT4 translocation, and actin reorganization, as wortmannin did. In contrast, the inactive analog U73343 did not have an inhibitory effect. Furthermore, translocation of GLUT4-GFP in response to insulin was completely abolished by cotransfection with a PLCgamma-inactive mutant in HeLa cells, a cell model sensitive to insulin that express PLCgamma. U73122 did not affect PI3-kinase nor Akt activation, but impaired PKCzeta activation by insulin, as wortmannin did. PLC activity renders two products, IP(3) and DAG, and DAG can be metabolized to PA by the action of DAG-kinase. Using the compound R54494, a DAG-kinase inhibitor, insulin-induced PKCzeta activation was also suppressed, this activity being restored by addition of PA. In summary, these data indicate that PLCgamma, activated at least partially by PI3-kinase, is a link between insulin receptor and PKCzeta through the production of PA and could mediate insulin-induced glucose uptake and GLUT4 translocation.  相似文献   

9.
Summary The action of the amino-reactive substances pyridoxal phosphate, 4-acetamido-4-isothiocyanato-stilbene-2,2-disulfonic acid and 2,4,6-trinitrobenzene sulfonic acid on the contraction threshold, taken as parameter for the initiation of contraction, was investigated in fibers of the sartorius muscle of the frog. The contraction threshold was shifted by 1 to 11 mV tomore negative potentials with 1 to 20mm PDP. Similar shifts from 2 to 17 mV were produced by 0.66 to 20mm SITS. The threshold shift was only partially reversible. The shift of the contraction threshold obtained with 2mm SITS was nearly constant at different [Ca2+]o and [Mg2+]o from 1.5 to 50mm with a tendency to increase at higher divalent cation concentration. TNBS had no effect on the contraction threshold.The action of PDP and SITS on the contraction threshold was successfully described by the surface charge model used earlier to explain the effect of lanthanum, neuraminidase and ruthenium red on the contraction threshold (M. Dörrscheidt-Käfer,Pfluegers Arch. 380:171–179, 181–187, 1979;J. Membrane Biol. 62:95–103, 1981). Here it was assumed that PDP and SITS bind to positive fixed charges on the surface of the T-tubular wall. This results in a shift of the calculated surface potential to more negative values which is thought to account for the measured shift of the contraction threshold.  相似文献   

10.
11.
Recent studies on the role of caveolin-1 in adipocytes showed that caveolin has emerged as an important regulatory element in insulin signaling but little is known on its role in skeletal muscle cells. In this study, we demonstrate for the first time that caveolin-1 plays a crucial role in insulin dependent glucose uptake in skeletal muscle cells. Differentiation of L6 skeletal muscle cells induce the expression of caveolin-1 and caveolin-3 with partial colocalization. However in contrast to adipocytes, phosphorylation of insulin receptor beta (IRbeta) and Akt/Erk was not affected by the respective downregulation of caveolin-1 or caveolin-3 in the muscle cells. Moreover, the phosphorylation of IRbeta was detected not only in the caveolae but also in the non-caveolae fractions of the muscle cells despite the interaction of IRbeta with caveolin-1 and caveolin-3. These data implicate the lack of relationship between caveolins and IRbeta pathway in the muscle cells, different from the adipocytes. However, glucose uptake was reduced specifically by downregulation of caveolin-1, but not that of caveolin-3. Taken together, these observations suggest that caveolin-1 plays a crucial role in glucose uptake in differentiated muscle cells and that the regulation of caveolin-1 expression may be an important mechanism for insulin sensitivity, implying the role of muscle cells for type 2 diabetes.  相似文献   

12.
Diabetes mellitus is a global disease, and the number of patients with it is increasing. Of various agents for treatment, those that directly act on muscle are currently attracting attention because muscle is one of the main tissues in the human body, and its metabolism is decreased in type II diabetes. In this study, we found that hydroxylamine (HA) enhances glucose uptake in C2C12 myotubes. Analysis of HA’s mechanism revealed the involvement of IRS1, PI3 K and Akt that is related to the insulin signaling pathway. Further investigation about the activation mechanism of insulin receptor or IRS1 by HA may provide a way to develop a novel anti-diabetic agent alternating to insulin.  相似文献   

13.
The major glucose transporter protein expressed in skeletal muscle is GLUT4. Both muscle contraction and insulin induce translocation of GLUT4 from the intracellular pool to the plasma membrane. The intracellular pathways that lead to contraction- and insulin-stimulated GLUT4 translocation seem to be different, allowing the attainment of a maximal effect when acting together. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum or from autocrine- or paracrine-mediated activation of glucose transport. During exercise skeletal muscle utilizes more glucose than when at rest. However, endurance training leads to decreased glucose utilization during sub-maximal exercise, in spite of a large increase in the total GLUT4 content associated with training. The mechanisms involved in this reduction have not been totally elucidated, but appear to cause the decrease of the amount of GLUT4 translocated to the plasma membrane by altering the exercise-induced enhancement of glucose transport capacity. On the other hand, the effect of resistance training is controversial. Recent studies, however, demonstrated the improvement in insulin sensitivity correlated with increasing muscle mass. New studies should be designed to define the molecular basis for these important adaptations to skeletal muscle. Since during exercise the muscle may utilize insulin-independent mechanisms to increase glucose uptake, the mechanisms involved should provide important knowledge to the understanding and managing peripheral insulin resistance.  相似文献   

14.
15.
IL-6 expression in skeletal muscle is stimulated by contractions. We sought to examine whether hyperinsulinaemia increases IL-6 mRNA in skeletal muscle and whether any increase is modified in insulin resistant muscle. We hypothesized that intramuscular IL-6 mRNA would be increased in response to insulin, but such an affect would be unaffected by insulin resistance because the primary insulin sensitive signalling protein responsible for activating IL-6 functions normally in insulin resistant muscle. Transgenic rats over-expressing the gluconeogenic regulatory enzyme phosphoenolpyruvate carboxykinase (PEPCK) were studied. White gastrocnemius muscle samples were obtained under hyperinsulinaemic, euglycaemic clamp (4 mU kg(-1)min(-1) insulin, plasma glucose concentration 4-6 mmol L(-1)) and basal conditions in both PEPCK (basal n=4; insulin n=5) and wild-type (CON) (basal n=5; insulin n=4) rats, which were previously injected with a bolus of 2-[1-14C]deoxyglucose (2-DG) into the carotid artery. Muscle samples were assayed for 2-DG uptake and IL-6 mRNA. No differences in 2-DG uptake or IL-6 mRNA were observed when comparing groups under basal conditions. Under clamp conditions, 2-DG uptake was lower (P<0.05) in PEPCK compared with CON. Insulin stimulation in CON did not change IL-6 mRNA compared with basal levels. In contrast, there was an approximately 8-fold increase (P<0.05) in IL-6 mRNA in insulin-stimulated PEPCK compared with CON basal levels. Insulin stimulation increases IL-6 gene expression in insulin resistant, but not healthy, skeletal muscle, suggesting that IL-6 expression in skeletal muscle is sensitive to changes in insulin in circumstances of insulin resistance. It is likely that the differences observed when comparing healthy with insulin resistant muscle are due to the differential activation of insulin sensitive signalling proteins responsible for activating IL-6.  相似文献   

16.
Insulin action in skeletal muscle from patients with NIDDM   总被引:12,自引:0,他引:12  
Insulin resistance in peripheral tissues is a common feature of non insulin-dependent diabetes mellitus (NIDDM). The decrease in insulin-mediated peripheral glucose uptake in NIDDM patients can be localized to defects in insulin action on glucose transport in skeletal muscle. Following short term in vitro exposure to both submaximal and maximal concentrations of insulin, 3-O-methylglucose transport rates are 40-50% lower in isolated skeletal muscle strips from NIDDM patients when compared to muscle strips from nondiabetic subjects. In addition, we have shown that physiological levels of insulin induce a 1.6-2.0 fold increase in GLUT4 content in skeletal muscle plasma membranes from control subjects, whereas no significant increase was noted in NIDDM skeletal muscle. Impaired insulin-stimulated GLUT4 translocation and glucose transport in NIDDM skeletal muscle is associated with reduced insulin-stimulated IRS-1 tyrosine phosphorylation and PI3-kinase activity. The reduced IRS-1 phosphorylation cannot be attributed to decreased protein expression, since the IRS-1 protein content is similar between NIDDM subjects and controls. Altered glycemia may contribute to decreased insulin-mediated glucose transport in skeletal muscle from NIDDM patients. We have shown that insulin-stimulated glucose transport is normalized in vitro in the presence of euglycemia, but not in the presence of hyperglycemia. Thus, the circulating level of glucose may independently regulate insulin stimulated glucose transport in skeletal muscle from NIDDM patients via a down regulation of the insulin signaling cascade.  相似文献   

17.
18.
Skeletal muscle is an important organ for controlling the development of type 2 diabetes. We discovered Panax notoginseng roots as a candidate to improve hyperglycemia through in vitro muscle cells screening test. Saponins are considered as the active ingredients of ginseng. However, in the body, saponins are converted to dammarane-type triterpenes, which may account for the anti-hyperglycemic activity. We developed a method for producing a dammarane-type triterpene extract (DTE) from Panax notoginseng roots and investigated the extract’s potential anti-hyperglycemic activity. We found that DTE had stronger suppressive activity on blood glucose levels than the saponin extract (SE) did in KK-Ay mice. Additionally, DTE improved oral glucose tolerance, insulin sensitivity, glucose uptake, and Akt phosphorylation in skeletal muscle. These results suggest that DTE is a promising agent for controlling hyperglycemia by enhancing glucose uptake in skeletal muscle.  相似文献   

19.
The gene expression pattern of the glucose transporters (GLUT1, GLUT3, GLUT8, and GLUT12) among pectoralis major and minor, biceps femoris, and sartorius muscles from newly hatched chicks was examined. GLUT1 mRNA level was higher in pectoralis major muscle than in the other muscles. Phosphorylated AKT level was also high in the same muscle, suggesting a relationship between AKT and GLUT1 expression.  相似文献   

20.
A simple method to determine the in vitro biological activity of insulin by measuring glucose uptake in the rat adipocytes is presented here. In the presence of insulin, the glucose uptake is 5-6 times more than the basal control. And the uptake of D-[3-3H]-glucose is linear as the logarithm of insulin concentration from 0.2 μg/L to 1.0 μg/L. Glucose and 3-O-methyl-glucose inhibit D-[3-3H]-glucose uptake into adipocytes. By this method, the in vitro biological activity of [B2-Lys]-insulin and [B3-Lys]-insulin was measured to be 61.6% and 154% respectively, relative to that of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号