首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[3H]-auxin (0.13 to 0.18 nmol) was applied to the apical bud of broadbean plants (Vicia faba L. cv. Aguadulce). After 24 h, the exportation from the donor organ was ended. After 48 h, i.e. 10–15 h after the passage of the [3H]-auxin pulse into the root system, the distribution and the nature of labelled molecules located in the basal part of the stem and in the axillary buds were investigated. Chromatographic analyses concerned both intact plants and plants decapitated 12 h, 24 h or 42 h after the [3H]-auxin application. In intact plants, there was no significant amount of [3H]-auxin in the axillary buds, whose radioactivity was very low compared to the stem tissues. The labelled molecules with the Rf of auxin represented 50% or more of the whole radioactivity of the stem tissues. The distribution of [3H]-auxin was not uniform along the stem. In particular, the cotyledonary node zone, bearing the most inhibited buds, which is known to be an important centre of label retention, contained the highest amounts of labelled auxin both in intact and decapitated plants. The decapitation was quickly followed by a decrease of the [3H]-auxin amount in the stem base more than 15 cm away from the wound, particularly in the scale leaf nodes, whose axillary buds were mainly the ones to grow after relief from apical dominance. The induction of this early decrease was clearly distinct in plants decapitated when auxin exportation from the donor organ was ended.  相似文献   

2.
Shoot branching is one of the major determinants of plant architecture. Polar auxin transport in stems is necessary for the control of bud outgrowth by a dominant apex. Here, we show that following decapitation in pea (Pisum sativum L.), the axillary buds establish directional auxin export by subcellular polarization of PIN auxin transporters. Apical auxin application on the decapitated stem prevents this PIN polarization and canalization of laterally applied auxin. These results support a model in which the apical and lateral auxin sources compete for primary channels of auxin transport in the stem to control the outgrowth of axillary buds.  相似文献   

3.
The transport of radiolabeled indoleacetic acid (IAA), and some of its conjugates, was investigated in nodal stem segments of Phaseolus vulgaris L. Donor agar blocks containing either [2-acetyl-14C]-IAA; [2-acetyl-14C]-indole-3-acetyl-L-aspartate (IAAsp); [2-acetyl-14C]-indole-3-acetyl-L-glycine (IAGly); or [2-acetyl-14C]-indole-3-acetyl-L-alanine (IAAla) were placed on either the apical or basal cut surface of stem segments each bearing an axillary bud at the midline. In some experiments, a receiver block was placed on the end opposite to the donor. After transport was terminated, the segments were divided into five equal sections plus the bud, and the radioactivity of donors, receivers and each part of the stem segment was counted.For all four substances tested, the amount of 14C transported to the axillary bud from the base was the same or greater than that from the apical end. After basipetal transport, the distribution of 14C in the segment declined sharply from apex to base. The inverse was true for acropetal transport. Transport for the three IAA conjugates did not differ substantially from each other.The IAA transport inhibitor, N-1-naphthylphthalamic acid (NPA), inhibited basipetal 14C-IAA transport to the base of the stem segment but did not alter substantially the amount of 14C-IAA recovered from the bud. Transport of 14C-IAA from the apical end to all parts of the stem segment declined when the base of the section was treated with nonradioactive IAA. Taken together with data presented in the accompanying article [Tamas et al. (1989) Plant Growth Regul 8: 165–183], these results suggest that the transport of IAA plays a role in axillary bud growth regulation, but its effect does not depend on the accumulation of IAA in the axillary bud itself.  相似文献   

4.
Modes of transport and metabolism of 14 C-IAA and 3 H-IAA in relation to morphogenesis of axillary buds in Scrophularia arguta. The main objectives of this study were to investigate the morphogenetic role of IAA on the growth and development of axillary buds. After foliar applications of radioactive IAA for 6 h on intact plants of Scrophularia arguta Sol. the characteristics of auxin transport were studied by liquid scintillation counting, thin layer chromatography and microautoradiography. The main part of the radioactivity moved at a mean rate of 7 mm/h. Over long periods of transport, the tracers accumulated at the base of the axis and in the roots. The nodes were a little richer in 3H or 14C than the internodes. This fact seemed to be correlated with the vascular organization of this part of the stem. A very weak proportion of tracers was found in axillary buds. The radioactivity was to about 50% associated with the IAA molecule; the rest corresponded essentially to indolyl-4-acetyl-l-aspartic acid and indolyl-3-aldehyde. Tracers were mainly concentrated in the phloem along the whole axis and, to a lesser extent in some of the young differentiating metaxylem vessels, and in the medullary rays. No radioactivity was found in the cambial zone and in the mature xylem, nor in the parenchymas. These results support the view of an indirect role of IAA on the axillary bud growth and morphogenesis.  相似文献   

5.
According to the auxin-inhibition hypothesis of apical dominance,apically produced auxin moves down the stem and inhibits axillarybud outgrowth, either directly or indirectly. This hypothesishas been examined further by monitoring changes in basipetalauxin transport and endogenous auxin concentration in Ipomoeanil caused by shoot inversion, a stimulus that releases apicaldominance. The results indicate that inversion reduces auxintransport in the main stem. In upright shoots of intact plants,a 16-h pretreatment with [3H]IAA 4 cm below the apex resultsin downward movement of label and accumulation in nodes, especiallythe cotyledonary node. Label does not accumulate in the lateralbuds. GC-MS determinations of endogenous free auxin level inthe fourth node, where a lateral bud grows out following inversionof the upper part of the shoot, show no changes at 3 and 8 hafter inversion, the range of times for inversion-induced budrelease, or at 24 h, when bud outgrowth is continuing. However,inversion did cause a just-detectable decrease (approx. 10%)in the IAA level of the shoot's elongation region. Althoughauxin transport in segments of the main stem is partially inhibitedby inversion over a period shorter than the latent time of budrelease, thus providing a means for the expected depletion ofauxin in the fourth node, no depletion could be detected there.These results suggest that either a decrease in IAA level inthe main stem is not causal of bud release or that the decreasedIAA pool responsible for bud release is compartmented and cannotbe measured in whole-tissue extracts.Copyright 1993, 1999 AcademicPress Apical dominance, auxin content, auxin transport, axillary bud release, GC-MS, Ipomoea nil, Pharbitis nil, shoot inversion  相似文献   

6.
Axillary bud outgrowth is regulated by both environmental cues and internal plant hormone signaling. Central to this regulation is the balance between auxins, cytokinins, and strigolactones. Auxins are transported basipetally and inhibit the axillary bud outgrowth indirectly by either restricting auxin export from the axillary buds to the stem (canalization model) or inducing strigolactone biosynthesis and limiting cytokinin levels (second messenger model). Both models have supporting evidence and are not mutually exclusive. In this study, we used a modified split-plate bioassay to apply different plant growth regulators to isolated stem segments of chrysanthemum and measure their effect on axillary bud growth. Results showed axillary bud outgrowth in the bioassay within 5 days after nodal stem excision. Treatments with apical auxin (IAA) inhibited bud outgrowth which was counteracted by treatments with basal cytokinins (TDZ, zeatin, 2-ip). Treatments with basal strigolactone (GR24) could inhibit axillary bud growth without an apical auxin treatment. GR24 inhibition of axillary buds could be counteracted with auxin transport inhibitors (TIBA and NPA). Treatments with sucrose in the medium resulted in stronger axillary bud growth, which could be inhibited with apical auxin treatment but not with basal strigolactone treatment. These observations provide support for both the canalization model and the second messenger model with, on the one hand, the influence of auxin transport on strigolactone inhibition of axillary buds and, on the other hand, the inhibition of axillary bud growth by strigolactone without an apical auxin source. The inability of GR24 to inhibit bud growth in a sucrose treatment raises an interesting question about the role of strigolactone and sucrose in axillary bud outgrowth and calls for further investigation.  相似文献   

7.
BACKGROUND: Plants achieve remarkable plasticity in shoot system architecture by regulating the activity of secondary shoot meristems, laid down in the axil of each leaf. Axillary meristem activity, and hence shoot branching, is regulated by a network of interacting hormonal signals that move through the plant. Among these, auxin, moving down the plant in the main stem, indirectly inhibits axillary bud outgrowth, and an as yet undefined hormone, the synthesis of which in Arabidopsis requires MAX1, MAX3, and MAX4, moves up the plant and also inhibits shoot branching. Since the axillary buds of max4 mutants are resistant to the inhibitory effects of apically supplied auxin, auxin and the MAX-dependent hormone must interact to inhibit branching. RESULTS: Here we show that the resistance of max mutant buds to apically supplied auxin is largely independent of the known, AXR1-mediated, auxin signal transduction pathway. Instead, it is caused by increased capacity for auxin transport in max primary stems, which show increased expression of PIN auxin efflux facilitators. The max phenotype is dependent on PIN1 activity, but it is independent of flavonoids, which are known regulators of PIN-dependent auxin transport. CONCLUSIONS: The MAX-dependent hormone is a novel regulator of auxin transport. Modulation of auxin transport in the stem is sufficient to regulate bud outgrowth, independent of AXR1-mediated auxin signaling. We therefore propose an additional mechanism for long-range signaling by auxin in which bud growth is regulated by competition between auxin sources for auxin transport capacity in the primary stem.  相似文献   

8.
The hormonal control of axillary bud growth was investigated in cultured stem segments of Phaseolus vulgaris L. When the stem explants were excised and implanted with their apical end in a solid nutrient medium, outgrowth of the axillary buds-located at the midline of the segment-was induced. However, if indoleacetic acid (IAA) or naphthaleneacetic acid (NAA) was included in the medium, bud growth was inhibited. The exposure of the apical end to IAA also caused bud abscission and prevented the appearance of new lateral buds.In contrast to apically inserted segments, those implanted in the control medium with their basal end showed much less bud growth. In these segments, the auxin added to the medium either had no effect or caused a slight stimulation of bud growth.The IAA transport inhibitor N-1-naphthylphthalamic acid (NPA) relieved bud growth inhibition by IAA. This suggests that the effect of IAA applied at the apical end requires the transport of IAA itself rather than a second factor. With the apical end of the segment inserted into the IAA-containing medium, simultaneous basal application of IAA relieved to some extent the inhibitory effect of the apical IAA treatment. These results, together with data presented in a related article [Lim R and Tamas I (1989) Plant Growth Regul 8: 151–164], show that the polarity of IAA transport is a critical factor in the control of axillary bud growth.Of the IAA conjugates tested for their effect on axillary bud growth, indoleacetyl alanine, indoleacetic acid ethyl ester, indoleacetyl-myo-inositol and indoleacetyl glucopyranose were strongly inhibitory when they were applied to the apical end of the stem explants. There was a modest reduction of growth by indoleacetyl glycine and indoleacetyl phenylalanine. Indoleacetyl aspartic acid and indoleglyoxylic acid had no effect.In addition to IAA and its conjugates, a number of other plant growth substances also affected axillary bud growth when applied to the apical end of stem segments. Myo-inositol caused some increase in the rate of growth, but it slightly enhanced the inhibitory effect of IAA when the two substances were added together. Gibberellic acid (GA3) caused some stimulation of bud growth when the explants were from younger, rather than older plants. The presence of abscisic acid (ABA) in the medium had no effect on axillary bud growth. Both kinetin and zeatin caused some inhibition of axillary buds from younger plants but had the opposite effect on buds from older ones. Kinetin also enhanced the inhibitory effect of IAA when the two were applied together.In conclusion, axillary buds of cultured stem segments showed great sensitivity to auxins and certain other substances. Their growth responded to polarity effects and the interaction among different substances. Therefore, the use of cultured stem segments seems to offer a convenient, sensitive and versatile test system for the study of axillary bud growth regulation.  相似文献   

9.
Ethephon and the ethylene inhibitors Ag+ and aminoethoxyvinylglycine (AVG) inhibited outgrowth of the axillary bud of thefirst trifoliate leaf in decapitated plants of Phaseolus vulgaris.Endogenous ethylene levels decreased in the stem upon decapitationalthough it is not conclusive that a causal relationship existsbetween this decrease and the release of axillary buds frominhibition. The proposition that auxin-induced ethylene is responsiblefor the suppression of axillary bud growth in the decapitatedplant when the apical shoot is replaced by auxin is not borneout in this study. Application of IAA directly to the axillarybud of intact plants gave rise to a transient increase in budgrowth. This growth increment was annulled when AVG was suppliedwith IAA to the bud despite the fact that the dosage of AVGused did not affect the normal slow growth rate of the bud ofthe intact plant or bud outgrowth resulting from shoot decapitation.  相似文献   

10.
Soluble-compound microautoradiography was used to determinethe distribution of radioactivity in transverse sections ofintact dwarf pea stems (Pisum sativum L.) following the applicationof [3H]IAA to the apical bud. Near the transport front labelwas confined to the cambial zone of the axial bundles, includingthe differentiating secondary vascular elements. Fully differentiatedphloem and xylem elements remained unlabelled and no radioactivitywas detected in the leaf or stipule traces. Similar resultswere obtained in experiments with Vicia faba L. plants. Nearerthe labelled apical bud of the pea there was a more generaldistribution of label and evidence was found of free-space transportof radioactive material in the pith. When [3H]IAA was applied to mature foliage leaves the greatestconcentration of label was found in the differentiated phloemelements of the appropriate leaf trace and in the phloem ofthe adjacent axial bundles. Both basipetal and acropetal transportwas detected in this case. These results are consistent with the conclusions drawn fromearlier transport experiments which indicated that in the intactplant the long-distance basipetal transport of auxin from theapical bud takes place in a system which is separated from thephloem transport system and suggests that the vascular cambiumand its immediate derivatives may function as the normal pathwayfor the longdistance movement of auxin in the plant. The physiologicalsignificance of such a transport system for auxin is discussed.  相似文献   

11.
One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in garden pea (Pisum sativum) by providing a rigorous examination of the dynamics of auxin level, auxin transport, and axillary bud growth. We demonstrate that after decapitation, initial bud growth occurs prior to changes in IAA level or transport in surrounding stem tissue and is not prevented by an acropetal supply of exogenous auxin. We also show that auxin transport inhibitors cause a similar auxin depletion as decapitation, but do not stimulate bud growth within our experimental time-frame. These results indicate that decapitation may trigger initial bud growth via an auxin-independent mechanism. We propose that auxin operates after this initial stage, mediating apical dominance via autoregulation of buds that are already in transition toward sustained growth.  相似文献   

12.
The effect of short and long term auxin treatments on the elongation of axillary buds and32P accumulation were studied in 2-leaf decapitated Alaska pea sailings. It was found that (1) auxin delayed the elongation of the lateral buds, (2) none of the auxin concentration applied completely inhibited the elongation of axillary buds, (3) auxin had no retarding effect on the growing buds, (4) strong polarization of 32P occurred in the parts above the treated leaf, when auxin was applied for a short period just after decapitation, (5) long term auxin treatments did not induce any such polarization of 32P to the parts above the treated leaf, (6) the root acted as an alternate accumulating organ for 32P when the apex was removed and the buds were inhibited, and (7) in decapitated plants the growing buds polarized 32P.  相似文献   

13.
Early changes in the concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) were investigated in the larger axillary bud of 2-week-old Phaseolus vulgaris L. cv Tender Green seedlings after removal of the dominant apical bud. Concentrations of these two hormones were measured at 4, 6, 8, 12 and 24 hours following decapitation of the apical bud and its subtending shoot. Quantitations were accomplished using either gas chromatography-mass spectrometry-selected ion monitoring (GS-MS-SIM) with [13C6]-IAA or [2H6]-ABA as quantitative internal standards, or by an indirect enzyme-linked immunosorbent assay, validated by GC-MS-SIM. Within 4 hours after decapitation the IAA concentration in the axillary bud had increased fivefold, remaining relatively constant thereafter. The concentration of ABA in axillary buds of decapitated plants was 30 to 70% lower than for buds of intact plants from 4 to 24 hours following decapitation. Fresh weight of buds on decapitated plants had increased by 8 hours after decapitation and this increase was even more prominent by 24 hours. Anatomical assessment of the larger axillary buds at 0, 8, and 24 hours following decapitation showed that most of the growth was due to cell expansion, especially in the intermodal region. Thus, IAA concentration in the axillary bud increases appreciably within a very few hours of decapitation. Coincidental with the rise in IAA concentration is a modest, but significant reduction in ABA concentration in these axillary buds after decapitation.  相似文献   

14.
Although cytokinins (CKs) are widely thought to have a role in promoting shoot branching, there is little data supporting a causative or even a correlative relationship between endogenous CKs and timing of bud outgrowth. We previously showed that lateral bud CK content increased rapidly following shoot decapitation. However, it is not known whether roots are the source of this CK. Here, we have used shoot decapitation to instantaneously induce lateral bud release in chickpea seedlings. This treatment rapidly alters rate and direction of solvent and solute (including CK) trafficking, which may be a passive signalling mechanism central to initiation of lateral bud release. To evaluate changes in xylem transport, intact and decapitated plants were infiltrated with [3H]zeatin riboside ([3H]ZR), a water‐soluble blue dye or [3H]H2O by injection into the hypocotyl. All three tracers were recovered in virtually all parts of the shoot within 1 h of injection. In intact plants, solute accumulation in the lateral bud at node 1 was significantly less than in the adjacent stipule and nodal tissue. In decapitated plants, accumulation of [3H]ZR and of blue dye in the same bud position was increased 3‐ to 10‐fold relative to intact plants, whereas content of [3H]H2O was greatly reduced indicating an increased solvent throughput. The stipule and cut stem, predicted to have high evapotranspiration rates, also showed increased solute content accompanied by enhanced depletion of [3H]H2O. To assess whether metabolism modifies quantities of active CK reaching the buds, we followed the metabolic fate of [3H]ZR injected at physiological concentrations. Within 1 h, 80–95% of [3H]ZR was converted to other active CKs (mainly zeatin riboside‐5′phosphate (ZRMP) and zeatin (Z)), other significant, but unconfirmed metabolites some of which may be active (O‐acetylZR, O‐acetylZRMP and a compound correlated with sites of high CK‐concentrations) and inactive catabolites (adenosine, adenine, 5′AMP and water). Despite rapid metabolic degradation, the total active label, which was indicative of CK concentration in buds, increased rapidly following decapitation. It can be inferred that xylem sap CKs represent one source of active CKs appearing in lateral buds after shoot decapitation.  相似文献   

15.
D. A. Morris  A. Guy Thomas 《Planta》1974,118(3):225-234
Summary When eight 14C-labelled auxin and non-auxin compounds were applied to the apical buds of intact dwarf pea seedlings (Pisum sativum L.), only [1-14C]indoleacetic acid ([14C]IAA) and -[1-14C] naphthaleneacetic acid ([14C]NAA) underwent appreciable basipetal transport during the first 24 h; over a longer period (72 h) considerable basipetal transport of the auxin [1-14C]2,4-dichlorophenoxyacetic acid ([14C]2,4-D) also occurred, but at a very much lower velocity (ca. 1.4–2.2 mm·h-1). The movement of 2,4-D possessed many of the characteristics of a typical auxin transport. During uptake and transport IAA and NAA were extensively metabolised to the corresponding aspartates, and to ethanol-insoluble/NaOH-soluble compounds; little metabolism of 2,4-D was observed. None of the non-auxin compounds applied (sorbose, sucrose, leucine, adenine and kinetin) underwent appreciable basipetal transport from the apical bud. All but sorbose were extensively metabolised by the apical tissues. Little metabolism of sorbose itself was detected.The results suggest that the long-distance basipetal auxin transport system from the apical bud of intact plants is specific for auxins; the specificity may result from the affinity of auxins for specific transport sites.  相似文献   

16.
植物生长调节剂对黑木相思优树腋芽增殖及生根的影响   总被引:1,自引:0,他引:1  
为建立黑木相思(Acacia melanoxylon)快繁技术体系,以含1个腋芽的无菌茎段为材料,研究了植物生长调节剂对其增殖和生根的影响。结果表明,6-BA 极易诱导黑木相思愈伤组织形成,但芽长势较差,不利于腋芽增殖体系的建立。而生长素既能诱导黑木相思生根,又能诱导腋芽增殖;将无菌茎段接入MS+IAA 0.5 mg L-1+IBA 0.5 mg L-1培养基中培养20 d的生根率为98.41%,培养40 d的腋芽增殖倍数为2.36,单株繁殖系数为6.57。这是首次成功建立高效、简便的生根和增殖同步发生的黑木相思直接器官发生途径的组培技术体系。  相似文献   

17.
Decapitation resulted in the transport of significant amountsof 14C to the axillary buds from either point of application,but pretreatment of the cut internode surface of decapitatedplants with IAA (alone or in combination with unlabelled kinetin)inhibited the transport of label to the axillary buds and resultedin its accumulation in the IAA-treated region of the stem. Inintact plants to which labelled kinetin was applied to the apicalbud there was little movement of 14C beyond the internode subtendingthis bud; when labelled kinetin was applied to the roots ofintact plants, 14C accumulated in the stem and apical bud butwas not transported to the axillary buds. A considerable proportionof the applied radioactivity became incorporated into ethanol-insoluble/NaOH-solublecompounds in the apical bud of intact plants, in internodestreated with IAA, and in axillary buds released from dominanceby removal of the apical bud. The results are discussed in relation to the possible role ofhormone-directed transport of cytokinins m the regulation ofaxillary bud growth.  相似文献   

18.
Shoot branching is essential in ornamental chrysanthemum production and determines final plant shape and quality. Auxin is associated with apical dominance to indirectly inhibit bud outgrowth. Two non-mutually exclusive models exist for indirect auxin inhibition. Basipetal auxin transport inhibits axillary bud outgrowth by limiting auxin export from buds to stem (canalization model) or by increasing strigolactone levels (second messenger model). Here we analyzed bud outgrowth in treatments with auxin (IAA), strigolactone (GR24) and auxin transport inhibitor (NPA) using a split-plate bioassay with isolated chrysanthemum stem segments. Besides measuring bud length, dividing cell percentage was measured with flow cytometry and RT-qPCR was used to monitor expression levels of genes involved in auxin transport (CmPIN1) and signaling (CmAXR2), bud dormancy (CmBRC1, CmDRM1) and strigolactone biosynthesis (CmMAX1, CmMAX3). Treatments over a 5-day period showed bud outgrowth in the control and inhibition with IAA and IAA?+?GR24. Bud outgrowth in the control coincided with high dividing cell percentage, decreased expression of CmBRC1 and CmDRM1 and increased CmPIN1 expression. Inhibition by IAA and IAA?+?GR24 coincided with low dividing cell percentage and unchanged or increased expressions of CmBRC1, CmDRM1 and CmPIN1. Treatment with GR24 showed restricted bud outgrowth that was counteracted by NPA. This restricted bud outgrowth was still concomitant with a high dividing cell percentage and coincided with decreased expression of dormancy genes. These results indicate incomplete inhibition of bud outgrowth by GR24 treatment and suggest involvement of auxin transport in the mechanism of bud inhibition by strigolactones, supporting the canalization model.  相似文献   

19.
W. Hartung  F. Steigerwald 《Planta》1977,134(3):295-299
Abscisic acid (ABA) in lanolin, applied to the internode of decapitated runner bean plants enhances the outgrowth of lateral buds. The optimum concentration of the paste is 10-5 M. The effect of ABA is counteracted by indoleacetic acid (IAA) but not by gibberellic acid (GA3). There is no effect when ABA is applied to the apical bud or lateral buds of intact plants. However, 13.2 ng given to the lateral buds of decapitated plants stimulate their growth, whereas higher concentrations are inhibitory. Consequently, ABA enhances growth of lateral buds directly, but only when apical dominance is already weakened. The growth of the decapitated 2nd internode was not affected by ABA. Radioactivity from [2-14C] ABA, applied to nonelongating 2nd internode stumps of decapitated runner bean plants moves to the lateral buds, whereas [1-14C]IAA-and [3H]GA1-translocation is much weaker. ABA transport is inhibited if IAA or [3H]GA1 is applied simultaneously. In elongating internodes [14C]ABA is almost completely immobile. [14C]IAA-and [3H]GA1-translocation is not affected by ABA. The amount of radioactivity from labelled ABA, translocated to the lateral buds, is highest during the early stages of bud outgrowth.Abbreviations ABA 2,4-cis, trans-(+)-abscisic acid - GA gibberellic acid - IAA indoleacetic acid - p.l. plain lanolin  相似文献   

20.
During the last century, two key hypotheses have been proposed to explain apical dominance in plants: auxin promotes the production of a second messenger that moves up into buds to repress their outgrowth, and auxin saturation in the stem inhibits auxin transport from buds, thereby inhibiting bud outgrowth. The recent discovery of strigolactone as the novel shoot-branching inhibitor allowed us to test its mode of action in relation to these hypotheses. We found that exogenously applied strigolactone inhibited bud outgrowth in pea (Pisum sativum) even when auxin was depleted after decapitation. We also found that strigolactone application reduced branching in Arabidopsis (Arabidopsis thaliana) auxin response mutants, suggesting that auxin may act through strigolactones to facilitate apical dominance. Moreover, strigolactone application to tiny buds of mutant or decapitated pea plants rapidly stopped outgrowth, in contrast to applying N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, which significantly slowed growth only after several days. Whereas strigolactone or NPA applied to growing buds reduced bud length, only NPA blocked auxin transport in the bud. Wild-type and strigolactone biosynthesis mutant pea and Arabidopsis shoots were capable of instantly transporting additional amounts of auxin in excess of endogenous levels, contrary to predictions of auxin transport models. These data suggest that strigolactone does not act primarily by affecting auxin transport from buds. Rather, the primary repressor of bud outgrowth appears to be the auxin-dependent production of strigolactones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号