首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The TFS1 gene of Saccharomyces cerevisiae is a dosage-dependent suppressor of cdc25 mutations. Overexpression of TFS1 does not alleviate defects of temperature-sensitive adenylyl cyclase (cdc35) or ras2 disruption mutations. The ability of TFS1 to suppress cdc25 is allele specific: the temperature-sensitive cdc25-1 mutation is suppressed efficiently but the cdc25-5 mutation and two disruption mutations are only partially suppressed. TFS1 maps to a previously undefined locus on chromosome XII between RDN1 and CDC42. The DNA sequence of TFS1 contains a single long open reading frame encoding a 219 amino acid polypeptide that is similar in sequence to two mammalian brain proteins. Insertion and deletion mutations in TFS1 are haploviable, indicating that TFS1 is not essential for growth.  相似文献   

3.
The α-factor mating pheromone induces a transient intracellular alkalinizatin of MATa cells within minutes after exposure to the pheromone, and is the earliest biochemical event that can be identified subsequent to the exposure. Dissipation of the pheromone induced pH gradient, using 2,4-dinotrophenol or sodium orthovanadate, does not inhibit the biological response of the yeast to the pheromone such as mating and ‘schmoo’ formation. These findings suggest that the pheromone mediated pH change per se is not a part of the transmembrane signalling but rather the consequence of a biochemical reaction triggered by the α-pheromone interaction with its receptor and may have a permissive effect on the pheromonal response. The cdc25ts mutation causes MATa cells to become nonresponsive to α-factor subsequent to a shift to the restrictive temperature, suggesting that the CDC25 gene product participates in the pheromone response pathway.  相似文献   

4.
Using a genetic system of haploid strains of Saccharomyces cerevisiae carrying a duplication of the his4 region on chromosome III, the pso3-1 mutation was shown to decrease the rate of spontaneous mitotic intrachromosomal recombination 2- to 13-fold. As previously found for the rad52-1 mutant, the pso3-1 mutant is specifically affected in mitotic gene conversion. Moreover, both mutations reduce the frequency of spontaneous recombination. However, the two mutations differ in the extent to which they affect recombination between either proximally or distally located markers on the two his4 heteroalleles. In addition, amplifications of the his4 region were detected in the pso3-1 mutant. We suggest that the appearance of these amplifications is a consequence of the inability of the pso3-1 mutant to perform mitotic gene conversion.  相似文献   

5.
Summary cyrl-2 is a temperature-sensitive mutation of the yeast adenylate cyclase structural gene, CYR1. The cyrl-2 mutation has been suggested to be a UGA mutation since a UGA suppressor SUP201 has been isolated as a suppressor of the cyrl-2 mutation. Construction of chimeric genes restricted the region containing the cyrl-2 mutation, and the cyrl-2 UGA mutation was identified at codon 1282, which lies upstream of the region coding for the catalytic domain of adenylate cyclase. Alterations in the region upstream of the cyrl-2 mutation site result in null mutations. The complete open reading frame of the cyrl-2 gene expressed under the control of the GAL1 promoter complemented cyrl-dl in a galactose-dependent manner. These results suggest that at the permissive temperature weak readthrough occurs at the cyrl-2 mutation site to produce low levels of active adenylate cyclase. An endogenous suppressor in yeast cells is assumed to be responsible for this readthrough.  相似文献   

6.
Summary Mitochondrial targeting of an Atp2-LacZ fusion protein confers a respiration-defective phenotype on yeast cells. This effect has been utilized to select strains that grow on nonfermentable carbon sources, some of which have decreased levels of hybrid protein localized to the organelle. Many of the mutants obtained were also temperature-sensitive for growth on all media. The recessive mft (mitochondrial fusion targeting) mutants have been assigned to three complementation groups. MFT1 was cloned and sequenced: it encodes a 255 amino acid protein that is highly basic and has no predicted membrane-spanning domains or organelle-targeting sequences. The MFT1 gene is 91% identical to an open reading frame 3 of the SIR3 gene. Evidence is presented that these two closely related genes could represent a recent gene duplication.The sequence reported here has been listed in the EMBL Data Library with Accession Number X55360.  相似文献   

7.
8.
A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.  相似文献   

9.
Summary The cell division cycle gene CDC25 was replaced by various disrupted and deleted mutant copies. Mutants disrupted at a central position of the gene, or lacking 532 residues within the amono-terminal half of the gene product grow normally in glucose, but not in acetate media, and they fail to sporulate as homozygous diploids. Disruptions or deletions within the carboxy-terminal half are lethal, except for the deletion of the 38 carboxy-terminal residues, which are required for sporulation but not for growth in glucose or acetate media. It is concluded that distinct domains of the CDC25 gene product are involved in the control of mitosis and/or meiosis.  相似文献   

10.
Summary The product of the PHO85 gene, which encodes one of the negative regulatory factors of the PHO system in Saccharomyces cerevisiae, shows significant amino acid sequence homology with the CDC28 protein kinase. However, overexpressing PHO85 did not suppress the temperature sensitive phenotype of the cdc28-1 mutation. The nucleotide sequence of the PHO85 gene strongly suggests the presence of an intron near the sequence encoding the N-terminal region.  相似文献   

11.
【目的】本论文研究酿酒酵母srp4039突变基因对酵母细胞异丁醇耐受性的影响。【方法】首先,以酿酒酵母野生型W303-1A和突变株EMS39染色体DNA为模板克隆野生型SRP40基因和srp4039突变基因;然后,将野生型SRP40基因和srp4039突变基因分别连接到质粒YCplac22上,构建质粒YCplac22-SRP40和YCplac22-srp4039。将质粒YCplac22-SRP40、YCplac22-srp4039以及YCplac22空质粒分别转化入野生型酿酒酵母W303-1A中,分别得到W303-1A-SRP40工程菌、W303-1A-srp4039工程菌和W303-1A-control工程菌。将3株工程菌分别置于含1.0%异丁醇、1.3%异丁醇、8.0%乙醇和0.5%异戊醇的CM培养基中进行发酵,测定细胞密度(OD600)和生长情况,并计算2–10 h的比生长速率(μ)。将3株工程菌于55°C热激4 min后做稀释...  相似文献   

12.
13.
14.
15.
Summary The product of the CDC7 gene of Saccharomyces cerevisiae has multiple cellular functions, being needed for the initiation of DNA synthesis during mitosis as well as for synaptonemal complex formation and commitment to recombination during meiosis. The CDC7 protein has protein kinase activity and contains the conserved residues characteristic of the protein kinase catalytic domain. To determine which of the cellular functions of CDC7 require this protein kinase activity, we have mutated some of the conserved residues within the CDC7 catalytic domain and have examined the ability of the mutant proteins to support mitosis and meiosis. The results indicate that the protein kinase activity of the CDC7 gene product is essential for its function in both mitosis and meiosis and that this activity is potentially regulated by phosphorylation of the CDC7 protein.  相似文献   

16.
Summary In Saccharomyces cerevisiae the HOM2 gene encodes aspartic semi-aldehyde dehydrogenase (ASA DH). The synthesis of this enzyme had been shown to be derepressed by growth in the presence of high concentrations of methionine. In the present work we have cloned and sequenced the HOM2 gene and found that the promoter region of this gene bears one copy of the consensus sequence for general control of amino acid synthesis. This prompted us to study the regulation of the expression of the HOM2 gene. We have found that ASA DH is the first reported enzyme of the related threonine and methionine pathway to be regulated by the general control of amino acid synthesis.  相似文献   

17.
We report here the first cloning of a chalcone flavonone isomerase gene (CHI) from maize. Northern blot experiments indicate that the maize CHI gene (ZmCHI1) is regulated in the pericarp by the P gene, a myb homologue. The ZmCHI1 gene encodes a 24.3 kDa product 55% and 58% identical to CHI-A and CHI-B from Petunia, respectively. This maize CHI gene has four exons and an intron-exon structure identical to the CHI-B gene of Petunia hybrida. RFLP mapping data indicate that some inbred lines contain two additional CHI-homologous sequences, suggesting an organization more complex than that found in Petunia or bean. The possibility that the additional CHI-homologous sequences are responsible for the lack of CHI mutants in maize will be discussed.  相似文献   

18.
Thecdc2 + gene product (p34cdc2) is a protein kinase that regulates entry into mitosis in all eukaryotic cells. The role that p34cdc2 plays in the cell cycle has been extensively investigated in a number of organisms, including the fission yeastSchizosaccharomyces pombe. To study the degree of functional conservation among evolutionarily distant p34cdc2 proteins, we have constructed aS. pombe strain in which the yeastcdc2 + gene has been replaced by itsDrosophila homologue CDC2Dm (theCDC2Dm strain). ThisCDC2Dm S. pombe strain is viable, capable of mating and producing four viable meiotic products, indicating that the fly p34CDC2Dm recognizes all the essentialS. pombe cdc2 + substrates, and that it is recognized by cyclin partners and other elements required for its activity. The p34CDC2Dm protein yields a lethal phenotype in combination with the mutant B-type cyclin p56cdc13-117, suggesting that thisS. pombe cyclin might interact less efficiently with theDrosophila protein than with its native p34cdc2 counterpart. ThisCDC2Dm strain also responds to nutritional starvation and to incomplete DNA synthesis, indicating that proteins involved in these signal transduction pathways, interact properly with p34CDC2Dm (and/or that p34cdc2-independent pathways are used). TheCDC2Dm gene produces a ‘wee’ phenotype, and it is largely insensitive to the action of theS. pombe weel + mitotic inhibitor, suggesting thatDrosophila weel + homologue might not be functionally conserved. ThisCDC2Dm strain is hypersensitive to UV irradiation, to the same degree asweel-deficient mutants. A strain which co-expresses theDrosophila and yeastcdc2+ genes shows a dominantwee phenotype, but displays a wild-type sensitivity to UV irradiation, suggesting that p34cdc2 triggers mitosis and influences the UV sensitivity by independent mechanisms. Communicated by B. J. Kilbey  相似文献   

19.
Summary The URA7 gene of Saccharomyces cerevisiae encodes CTP synthetase (EC 6.3.4.2) which catalyses the conversion of uridine 5-triphosphate to cytidine 5-triphosphate, the last step of the pyrimidine biosynthetic pathway. We have cloned and sequenced the URA 7 gene. The coding region is 1710 by long and the deduced protein sequence shows a strong degree of homology with bacterial and human CTP synthetases. Gene disruption shows that URA7 is not an essential gene: the level of the intracellular CTP pool is roughly the same in the deleted and the wild-type strains, suggesting that an alternative pathway for CTP synthesis exists in yeast. This could involve either a divergent duplicated gene or a different route beginning with the amination of uridine mono- or diphosphate.  相似文献   

20.
Several pleiotropic drug sensitivities have been described in yeast. Some involve the loss of putative drug efflux pumps analogous to mammalian P-glycoproteins, others are caused by defects in sterol synthesis resulting in higher plasma membrane permeability. We have constructed a Saccharomyces cerevisiae strain that exhibits a strong crystal violet-sensitive phenotype. By selecting cells of the supersensitive strain for normal sensitivity after transformation with a wild-type yeast genomic library, a complementing 10-kb DNA fragment was isolated, a 3.4-kb subfragment of which was sufficient for complementation. DNA sequence analysis revealed that the complementing fragment comprised the recently sequenced SGE1 gene, a partial multicopy suppressor of gal11 mutations. The supersensitive strain was found to be a sge1 null mutant. Overexpression of SGE1 on a high-copy-number plasmid increased the resistance of the supersensitive strain. Disruption of SGE1 in a wild-type strain increased the sensitivity of the strain. These features of the SGE1 phenotype, as well as sequence homologies of SGE1 at the amino acid level, confirm that the Sge1 protein is a member of the drug-resistance protein family within the major facilitator superfamily (MFS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号