首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper summarizes the methodology utilized for measuring the toxic and inhibitory effects of azo-reactive dyes on the activity of activated sludge. The microbial sensor employed in this study consisted of a small-fluidized bed reactor in which the microbial mass was immobilized on spherical (diameter =1-2 mm) reticulated sinter glass carriers. To sustain a highly dense population of aerobic microbes, pure oxygen was supplied via a cylindrical chamber, which comprised part of the sample re-circulation system. The mean hydraulic retention time in the microbial sensor ranged between 30 and 40 min, while temperature was maintained at 30 degrees C and pH at 6.4. Inhibition of microbial activity (toxicity) was determined as the mean percent reduction in carbon dioxide production from microorganisms' respiration. Several azo-reactive dyes demonstrated toxicity when applied at a high concentration (2 g/l), however, a portion of the microbes showed tolerance to the dyes. Moreover, textile wastewater demonstrated very efficient biodegradation.  相似文献   

2.
The tetrazolium salt 5-cyano-2,3-ditolyltetrazolium chloride (CTC) was used for the determination of metabolically active bacteria in active sludge. The method was adapted and optimized to the conditions of activated sludge. The colorless and nonfluorescent tetrazolium salt is readily reduced to a water-insoluble fluorescent formazan product via the microbial electron transport system and indicates mainly dehydrogenase activity. After more than 2 h incubation, no further formation of new formazan crystals was observed, although the existing crystals in active cells continued to grow at the optimal CTC-concentration of 4 mM. The dehydrogenase activity determined by direct epifluorescence microscopic enumeration did not correlate with cumulative measured activity as determined by formazan extraction. The addition of nutrients did not lead to an increase of CTC-active cells. Sample storage conditions such as low temperature or aeration resulted in a significant decrease in dehydrogenase activity within 30 min. The rapid and sensitive method is well suited for the detection and enumeration of metabolically active microorganisms in activated sludge. Extracellular redox activity was measured with the tetrazolium salt 3′-{1-[phenylamino-) carbonyl]-3,4-tetrazolium}-bis(4-methoxy-6-nitro)benzene-sulfonic acid hydrate (XTT), which remains soluble in its reduced state, after extraction of extracellular polymeric substances (EPS) with a cation exchange resin. Received 12 August 1996/ Accepted in revised form 29 May 1997  相似文献   

3.
The microbial activity of aerobic heterotrophic, anoxic heterotrophic and aerobic autotrophic microorganisms in biological wastewater treatment was determined by means of an electrochemical bioactivity sensor. The development of the sensor resulted in a system which can determine the microbial activities that are relevant for effective wastewater treatment. The signals of the sensor system are proportional to the substrate degradation and it can show inhibiting effects on the biomass. The most important advantages of the system are: it is independent of O2 consumption, the three most important types of metabolic activities in wastewater technology can be measured with one sensor, furthermore the measurement is suitable for automation and it is on-line. The result is a potential for the optimization of processes based on microbial activity.  相似文献   

4.
A mathematical model with a consideration of energy spilling is developed to describe the activated sludge in the presence of different levels of metabolic uncouplers. The consumption of substrate and oxygen via energy spilling process is modeled with a Monod term, which is dependent on substrate and inhibitor. The sensitivity of the developed model is analyzed. Three parameters, maximum specific growth rate (μ max), energy spilling coefficient (q max), and sludge yield coefficient (Y H) are estimated with experimental data of different studies. The values of μ max, q max, and Y H are found to be 6.72 day-1, 5.52 day-1, and 0.60 mg COD mg-1 COD for 2, 4-dinitrophenol and 7.20 day-1, 1.58 day-1, and 0.62 mg COD mg-1 COD for 2, 4-dichlorophenol. Substrate degradation and sludge yield could be predicted with this model. The activated sludge process in the presence of uncouplers that is described more reasonably by the new model with a consideration of energy spilling. The effects of uncouplers on substrate consumption inhibition and excess sludge reduction in activated sludge are quantified with this model.  相似文献   

5.
The study investigated changes in the microbial population structure sustained at two different sludge ages of 10 d and 2 d under chronic impact of erythromycin. It intended to observe the experimental correlation between variable process kinetics and changes in the composition of the microbial community induced by erythromycin. Samples from two fill/draw reactors operated with continuous erythromycin dosing of 50 mg/L were collected for the analysis of microbial population structure using high-throughput sequencing of 16SrRNA gene. Significant changes were observed in the composition of microbial community during the exposure period. Richness analysis for slower growing culture indicated that most microbial fractions were inactivated and eliminated in favor of fewer more resistant species in different phyla. Sludge age appeared to control the impact of erythromycin on microbial composition. At a sludge age of 2 d, erythromycin appeared to generate richer community with faster growing and more compatible species. For slower growing culture, elimination of vulnerable species was supported by decrease in the number of shared level OTUs. For faster growing culture, shared species level OTUs also decreased significantly upon exposure to erythromycin, suggesting rapid washout and replacement by more resistant species. Resistance gene analysis yielded positive results for mph(A) gene indicating presence of erythromycin-resistant components in the microbial community.  相似文献   

6.
Understanding diversity and assembly patterns of microbial communities in activated sludge (AS) is pivotal for addressing fundamental ecological questions and wastewater treatment engineering. Recent applications of molecular methods especially high-throughput sequencing (HTS) have led to the explosion of information about AS community diversity, including the identification of uncultured taxa, and characterization of low-abundance but environmentally important populations such as antibiotic resistant bacteria and pathogens. Those progresses have facilitated the leverage of ecological theories in describing AS community assembly. The lognormal species abundance curve has been applied to estimate AS microbial richness. Taxa-area and taxa-time relationships (TAR and TTR) have been observed for AS microbial communities. Core AS microbial communities have been identified. Meanwhile, the roles of both deterministic and stochastic processes in shaping AS community structures have been examined. Nonetheless, it remains challenging to define tempo-spatial scales for reliable identification of community turnover, and find tight links between AS microbial structure and wastewater treatment plant (WWTP) functions. To solve those issues, we expect that future research will focus on identifying active functional populations in AS using omics- methods integrated with stable-isotope probing (SIP) with the development of bioinformatics tools. Developing mathematic models to understand AS community structures and utilize information on AS community to predict the performance of WWTPs will also be vital for advancing knowledge of AS microbial ecology and environmental engineering.  相似文献   

7.
8.
The composition of the microbial community present in the nitrifying-denitrifying activated sludge of an industrial wastewater treatment plant connected to a rendering facility was investigated by the full-cycle rRNA approach. After DNA extraction using three different methods, 94 almost full-length 16S rRNA gene clones were retrieved and analyzed phylogenetically. 59% of the clones were affiliated with the Proteobacteria and clustered with the beta- (29 clones), alpha- (24), and delta-class (2 clones), respectively. 15 clones grouped within the green nonsulfur (GNS) bacteria and 11 clones belonged to the Planctomycetes. The Verrucomicrobia, Acidobacteria, Nitrospira, Bacteroidetes, Firmicutes and Actinobacteria were each represented by one to five clones. Interestingly, the highest 'species richness' [measured as number of operational taxonomic units (OTUs)] was found within the alpha-class of Proteobacteria, followed by the Planctomycetes, the beta-class of Proteobacteria, and the GNS-bacteria. The microbial community composition of the activated sludge was determined quantitatively by using 36 group-, subgroup-, and OTU-specific rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization (FISH), confocal laser scanning microscopy and digital image analysis. 89% of all bacteria detectable by FISH with a bacterial probe set could be assigned to specific divisions. Consistent with the 16S rRNA gene library data, members of the beta-class of Proteobacteria dominated the microbial community and represented almost half of the biovolume of all bacteria detectable by FISH. Within the beta-class, 98% of the cells could be identified by the application of genus- or OTU-specific probes demonstrating a high in situ abundance of bacteria related to Zoogloea and Azoarcus sensu lato. Taken together, this study provides the first encompassing, high-resolution insight into the in situ composition of the microbial community present in a full-scale, industrial wastewater treatment plant.  相似文献   

9.
This paper applies a statistical thermodynamic approach to the kinetics of microbial growth influenced by pH. A general equation is developed and shown to provide a good theoretical basis for the existing pH models that have been widely used to describe the effects of pH on microbial growth kinetics. Four experimental data sets are used to test the general equation developed. The four data sets exhibited a variety of functional curve shapes, for example, symmetrical and asymmetrical bell-shaped, when the specific growth rate of microorganisms is plotted as a function of pH. All four data sets are found to be well represented by the general equation. The existing pH model was, however, found to represent only one out of four data sets, i.e., the symmetrical case.  相似文献   

10.
Nyuk-Min Chong   《Bioresource technology》2009,100(23):5750-5756
This work established a mathematical model that formulated degrader formation by conversion of indigenous microbial cells. Degrader conversion is attributed to genetic induction whose force is dependent on the strength of acclimating xenobiotic and the amount of indigenous cells. After successful conversion, which requires an amount of time proportionate to the lag, degraders grow on the xenobiotic substrate. This model formulated the lag and degrader formation with the sigmoid function and degrader growth with the Haldane kinetics. The model so completed accurately simulates the degradation and biomass courses during acclimation and degradation of a xenobiotic by indigenous activated sludge, wherein the factors relating to the acclimation process are given values. The model serves the need for a rational representation of microbial acclimation to a xenobiotic.  相似文献   

11.
Two bacteria were isolated from the activated sludge sample of a wastewater treatment plant in Dublin by enrichment culture technique with toluene as the sole source of carbon and energy. They were identified as Aeromonas caviae (To-4) and Pseudomonas putida (To-5). The growth of these bacteria depended on the manner in which toluene was supplied. In general, growth was better when toluene was supplied in the vapour phase. When toluene was added directly to the growth medium it was found to be toxic to the organisms but the toxic effect could be alleviated in the presence of other carbon sources and by the acclimation of the cells. The growth of To-4 on toluene has never been previously reported.  相似文献   

12.
The bacterial community in the activated sludge of a local wastewater treatment plant was studied in an effort to understand and exploit the metabolic versatility of microorganisms for the efficient biological treatment of food waste. Microorganisms capable of and efficient in degrading domestic food waste were screened based on their ability to produce areas of clearing on selective media containing protein, fat, cellulose and starch. Nine microbial species belonging to the genera Flavobacterium, Pseudomonas, Micrococcus, Aeromonas, Xanthomonas, Vibrio and Sphingomonas were found to degrade all components of food waste. These bacteria were added to domestic wastewater and shown to cause a 60% reduction in the biochemical oxygen demand (BOD) level of wastewater compared to a control in which no microorganisms were added. The ability of the microbial consortium to degrade domestic wastewater as evidenced by the decrease in BOD levels suggests its potential for use in the biological treatment of food waste.  相似文献   

13.
14.
Two lab-scale bioreactors (reactors 1 and 2) were employed to examine the changes in biological performance and the microbial community of an activated sludge process fed with ozonated sludge for sludge reduction. During the 122 d operation, the microbial activities and community in the two reactors were evaluated. The results indicated that, when compared with the conventional reactor (reactor 1), the reactor that was fed with the ozonated sludge (reactor 2) showed good removal of COD, TN and cell debris, without formation of any excess sludge. In addition, the protease activity and intracellular ATP concentration of reactor 2 were increased when compared to reactor 1, indicating that reactor 2 had a better ability to digest proteins and cell debris. DGGE analysis revealed that the bacterial communities in the two reactors were different, and that the dissimilarity of the bacterial population was nearly 40%. Reactor 2 also contained more protozoa and metazoa, which could graze on the ozone-treated sludge debris directly.  相似文献   

15.
16.
17.
Divalent cations act as bridges among extracellular polymeric substances (EPS) and form cross-linkage for the self-immobilization of microbial biomass. However, their effects on the nitrification performance during the biological nitrogen removal are still unclear. In the present study, the effects of Mg2+ on the nitrifying activity, EPS and floc characteristics were investigated using a lab-scale sequencing batch reactor. The distribution of Mg2+ was quantified at different level of sludge floc. The results indicated that the nitrification activity was significantly improved when influent Mg2+ was below 1.1 mmol/L, but suppressed at 3 mmol/L. The overall performance characterized by COD, NH4+-N and TN, the particle size and sludge flocculation ability rapidly increased with the increase of Mg2+ concentration. Mg2+ was mainly distributed in the pellet and changed slightly in supernatant, LB-EPS and TB-EPS. The four fluorescence peaks detected by three-dimensional excitation-emission matrix spectra were attributed to PN-like substances and humic acid-like substances in the LB-EPS and TB-EPS. The results of XPS analysis demonstrated that LB-EPS and TB-EPS comprised similar elements. Therefore, the types of EPS functional groups was unchanged under varied Mg2+ concentrations, while their proportions changed and LB-EPS/EPS was key factor for the changes of bioflocculation.  相似文献   

18.
19.
利用活性污泥微生物将剩余污泥发酵液中的挥发性脂肪酸(Volatile fatty acids,VFAs)转化为聚羟基脂肪酸酯(Polyhydroxyalkanoates,PHA)是目前环境生物技术领域的研究热点.但针对发酵液中非VFAs物质(主要是溶解性有机物,Dissolved organic matter,DOM)...  相似文献   

20.
A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm‐colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm‐colonized anode showed linear relationship with BOD content, to up to 250 mg/L (~233 ± 1 mA/m2), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine‐triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m2) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol‐ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers. Biotechnol. Bioeng. 2011;108: 2339–2347. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号