首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
G J Law  K P Ray  M Wallis 《FEBS letters》1984,166(1):189-193
A synthetic form of human pancreatic growth hormone releasing factor (GRF-44-NH2) was shown to be a potent stimulator of growth hormone (GH) secretion and cellular cyclic AMP levels in cultured sheep pituitary cells. A small dose-dependent stimulation of prolactin secretion was also observed. Somatostatin (0.5 microM) completely blocked the maximal GRF (1 nM)-stimulated secretion without a significant effect on cyclic AMP levels. Dopamine (0.1 microM) inhibited the GRF-elevated GH secretion by 50% and lowered cyclic AMP levels by 30%. Dopamine (0.1 microM) inhibition of basal prolactin secretion was not affected by GRF (1 nM). The data support the hypothesis that cyclic AMP is involved in the action of GRF but suggest that somatostatin can inhibit GRF-induced secretion of GH independently of cyclic AMP.  相似文献   

2.
J Simard  G Lefèvre  F Labrie 《Peptides》1987,8(2):199-205
We have investigated the effect of prior exposure to somatostatin (SRIF) alone or in combination with growth hormone-releasing factor (GRF) on the subsequent cyclic AMP and GH responses to GRF in rat anterior pituitary cells in primary culture. The maximal 4.5-fold stimulation of GH release induced by a 3-hr incubation with GRF is reduced by 60% following a prior 3-hr exposure to 30 nM GRF. A 3-hr preincubation with GRF in the presence of 30 nM SRIF doubles spontaneous GH release while the maximal amount of GH released during a subsequent 3-hr exposure to GRF is similar to that measured in cells pretreated with control medium, thus completely preventing the loss of GH responsiveness induced by prior exposure to GRF. The prevention by SRIF of the desensitizing action of GRF on GH release is not observed on the cyclic AMP response which remains almost completely inhibited in GRF-pretreated cells. Similar protective effects are obtained when SRIF is incubated with prostaglandin E2 (PGE2), thus completely preventing the desensitizing action of PGE2 on GH release. Prior treatment with pertussis toxin completely prevents the protective action of SRIF on GH responsiveness. Pretreatment with GRF + SRIF increases by 85 and 60% the maximal amount of GH release induced by cholera toxin and 8-bromoadenosine 3',5'-monophosphate, respectively. The post-SRIF rebound effect on GH release occurs mainly during the first 30 min following withdrawal of the tetradecapeptide. The present data demonstrate that simultaneous preincubation with SRIF and GRF prevents the marked inhibition of GH release during subsequent exposure to GRF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The counter-regulatory effects of beta-adrenergic stimulation and cyclic AMP on the insulin-like action of growth hormone (GH) on the subcellular distribution of insulin-like growth factor II (IGF-II) receptors were studied in fat cells from hypophysectomized (Hx) and sham-operated rats. For comparison, the effect of insulin on this process was also studied. Basal IGF-II binding was increased by approx. 2-fold in cells from Hx as compared with sham-operated animals. The stimulatory effect of insulin was decreased in Hx cells, mainly due to a basal redistribution but also to a reduced total number of receptors. GH exerted an acute insulin-like effect in cells from Hx rats and stimulated the translocation of IGF-II receptors from an intracellular pool to the plasma membrane. beta-Adrenergic stimulation with isoprenaline or addition of the non-metabolizable cyclic AMP-analogue N6-monobutyryl cyclic AMP induced a cellular resistance to both GH and insulin and also reduced the responsiveness to these hormones. Adenosine exerted a modulatory effect on both hormones. Binding of 125I-labelled GH to its receptors was not significantly changed by any of these factors. It is concluded that: (1) beta-adrenergic stimulation and cyclic AMP induce a cellular GH resistance at a level distal to the GH-binding site, and (2) the insulin-like effect of GH shares a common pathway with insulin which occurs at the post-binding level.  相似文献   

4.
M Sato  J Takahara  M Niimi  R Tagawa  S Irino 《Life sciences》1991,48(17):1639-1644
The present study was undertaken to investigate the direct actions of rat galanin (R-GAL) on growth hormone (GH) release from the rat anterior pituitary in vitro. R-GAL modestly but significantly stimulated GH release without an increase in intra- and extracellular cyclic AMP levels in monolayer cultures of rat anterior pituitary cells. This stimulatory effect of R-GAL was dose-dependent but not additive with that of GH-releasing factor (GRF). R-GAL-stimulated GH release was less sensitive to the inhibitory effect of somatostatin than was GRF-stimulated GH release. In perfusions of rat anterior pituitary fragments, R-GAL induced a gradual and sustained increase of GH release. Incremental GH release derived in part from preformed stored GH. These data confirm that R-GAL acts at the pituitary level to stimulate GH release by a mechanism distinct from that of GRF.  相似文献   

5.
The secretion of ACTH by corticotrophs in the anterior lobe of the rat pituitary gland is under the stimulatory influence of at least three receptors, namely that for peptidic CRF (corticotropin-releasing factor), vasopressin and alpha 1-adrenergic agents. CRF is a potent stimulator of cyclic AMP accumulation as well as adenylate cyclase activity in the rat adenohypophysis, thus suggesting an important role of cyclic AMP as mediator of CRF action on ACTH secretion. Vasopressin causes a 2-fold increase of the stimulatory effect of CRF on ACTH release in rat anterior pituitary cells in culture. The potentiating effects of vasopressin on CRF-induced ACTH release are accompanied by parallel changes of intracellular cyclic AMP levels. Vasopressin, while having no effect on basal cyclic AMP levels, causes a 2-fold increase in CRF-induced cyclic AMP accumulation without affecting the ED50 value of CRF action. ACTH secretion is also stimulated by a typical alpha 1-adrenergic receptor. Epinephrine causes a marked stimulation of ACTH release which is additive to that of CRF. Epinephrine, in analogy with vasopressin, although having no effect alone on basal cyclic AMP levels, causes a marked potentiation of CRF-induced cyclic AMP accumulation. Glucocorticoids cause a near-complete inhibition of epinephrine-induced ACTH secretion within 4 h with the following order of ED50 values: triamcinolone acetonide (0.2 nM) greater than dexamethasone (1.0 nM) much greater than cortisol (11 nM) greater than corticosterone (22 nM). Similar effects are observed for CRF- and vasopressin-induced ACTH release. Although the activity of the pituitary-adrenocortical axis in the rat is highly dependent upon sex steroids, 17 beta-estradiol, 5 alpha-dihydrotestosterone and the pure progestin R5020 have no detectable effect on basal or epinephrine-induced ACTH release, thus illustrating the high degree of specificity of glucocorticoids in their feedback control of ACTH secretion. Moreover, glucocorticoids have no effect on CRF-induced cyclic AMP accumulation, thus indicating that their inhibitory effect is exerted at a step following cyclic AMP accumulation.  相似文献   

6.
G J Law  K P Ray  M Wallis 《FEBS letters》1985,179(1):12-16
Human pancreatic growth hormone-releasing factor (GRF-44-NH2) stimulated growth hormone (GH) secretion and intracellular cyclic AMP levels in cultured pituitary cells from both sheep and rat. Somatostatin (SRIF), over a wide range of doses and time, showed no significant effect on the elevated cyclic AMP levels in sheep cells, but did block the GH release in a dose-dependent manner. In rat cells, however, SRIF inhibited GRF-stimulated cyclic AMP levels by 75% maximum (still 8-fold greater than the basal levels) and GH release to almost half the basal value. We conclude that somatostatin inhibits GRF-elevated cyclic AMP levels in rat pituitary cells but not in sheep cells.  相似文献   

7.
L-363,586 is a cyclic, hexapeptide analogue of somatostatin-14 with potent inhibitory actions on rat growth hormone (GH) release in vitro. The studies reported here investigate the direct effects of L-363,586 on basal and growth hormone-releasing factor (GRF)-stimulated GH secretion from 3 human somatotrophinomas in dispersed cell culture. 1nM and 10nM L-363,586 inhibited both basal and GRF-stimulated GH release from cells of all 3 somatotrophinomas during a 2h treatment period, whilst 100nM L-363,586 had a prolonged inhibitory action on basal GH secretion from cells of 2 of the tumours throughout treatment and recovery periods. Rebound release of GH was observed with cells of 1 tumour following treatment with L-363,586 plus GRF. The actions of L-363,586 were similar to those of somatostatin-14. These data suggest that L-363,586 may have a role in the treatment of acromegaly.  相似文献   

8.
The brain peptide human growth hormone releasing factor (1-40) (GRF), which stimulates adenylate cyclase activity in the anterior pituitary, is the predominant hormone signal for pituitary growth hormone (GH) release. Activators of protein kinase C such as teleocidin and 4 beta-phorbol 12-myristate 13-acetate (PMA) double the cyclic AMP accumulation induced by GRF, with no apparent effect on GRF potency; an inactive 4-alpha-PMA has no such action in cultured anterior pituitary cells. This PMA potentiation can be measured as early as 60 s, is maximal by 15 min, and wanes such that by 3-4 h there is no such amplifying effect of PMA. PMA, phorbol 12,13-dibutyrate, and teleocidin ED50 values for potentiating GRF activity are similar to those obtained for direct protein kinase C activation. The major inhibitory peptide somatostatin reduced both GRF- and GRF + PMA-stimulated cyclic AMP accumulation. Pertussis toxin totally blocked this somatostatin action without affecting the degree of maximal GRF potentiation achieved with PMA. Thus, the pertussis toxin target(s) are required for somatostatin inhibition of the cyclic AMP generating system, but may not be involved in the PMA potentiation of GRF-stimulated cyclic AMP accumulation.  相似文献   

9.
Cyclic AMP induces synthesis of prostaglandin E1 in platelets   总被引:1,自引:0,他引:1  
Although platelets are known to synthesize small amounts of prostaglandin E1 the control of the formation of this prostanoid has not been investigated. Incubation of human platelet-rich plasma with various compounds which are known to increase cyclic AMP concentration in platelets and inhibit platelet aggregation also increased intracellular prostaglandin E1 synthesis. The prostaglandin E1 was isolated by high pressure liquid chromatography and definitively identified by negative and positive ionization mass spectroscopy. The amounts of prostaglandin E1 formed were proportional to the concentration of cyclic AMP in platelets. Prostacyclin (10 nM) which is the most potent stimulator of cyclic AMP formation increased intracellular cyclic AMP by 4.6 fold and prostaglandin E1 level by 3 fold over the basal levels. Addition of theophylline, a cyclic AMP phosphodiesterase inhibitor, together with prostacyclin increased cyclic AMP concentration 8.7-fold and prostaglandin E1 level 12-fold compared to basal concentrations. Dibutyryl cyclic AMP (2 mM) and 8-bromo cyclic AMP (0.1 mM) increased prostaglandin E1 levels by 3 fold and 2 fold over the basal level, respectively. Prostaglandin D2 (3 microM) when added to platelet-rich plasma increased the cyclic nucleotide levels by 2 fold concomitant with 2 fold increase in prostaglandin E1 concentration. In contrast prostaglandin E2 or prostaglandin F2 alpha which had no effect on cyclic AMP level did not affect the prostaglandin E1 synthesis. Addition of 2',5'-dideoxyadenosine, an inhibitor of adenylate cyclase, to platelet-rich plasma inhibited both the increase of intracellular prostaglandin E1 and cyclic AMP levels induced by prostacyclin.  相似文献   

10.
H E Carlson 《Life sciences》1984,35(17):1747-1754
Nickel (Ni++) is a potent inhibitor of prolactin (PRL) secretion from isolated rat pituitary quarters in vitro, suppressing both basal PRL release and the stimulation of PRL secretion due to theophylline and dibutyryl cyclic AMP. Stimulation of growth hormone (GH) secretion by synthetic GHRH is also blunted by Ni++, although basal GH release and stimulated GH release due to theophylline or dibutyryl cyclic AMP are not suppressed. Ni++ antagonizes the stimulation of both PRL and GH secretion by barium (Ba++) ion, suggesting that the inhibitory effects of Ni++ on hormone release are due to an antagonism of calcium uptake or redistribution.  相似文献   

11.
Glucagon can stimulate gluconeogenesis from 2 mM lactate nearly 4-fold in isolated liver cells from fed rats; exogenous cyclic adenosine 3':5'-monophosphate (cyclic AMP) is equally effective, but epinephrine can stimulate only 1.5-fold. Half-maximal effects are obtained with glucagon at 0.3 nM, cyclic AMP at 30 muM and epinephrine at 0.2 muM. Insulin reduces by 50% the stimulation by suboptimal concentrations of glucagon (0.5 nM). A half-maximal effect is obtained with 0.3 nM insulin (45 microunits/ml). Glucagon in the presence of theophylline (1 mM) causes a rapid rise and subsequent fall in intracellular cyclic AMP with a peak between 3 and 6 min. Some of the fall can be accounted for by loss of nucleotide into the medium. This efflux is suppressed by probenecid, suggesting the presence of a membrane transport mechanism for the cyclic nucleotide. Glucagon can raise intracellular cyclic AMP about 30-fold; a half-maximal effect is obtained with 1.5 nM hormone. Epinephrine (plus theophylline, 1 mM) can raise intracellular cyclic AMP about 2-fold; the peak elevation is reached in less than 1 min and declines during the next 15 min to near the basal level. Insulin (10 nM) does not lower the basal level of cyclic AMP within the hepatocyte, but suppresses by about 50% the rise in intracellular and total cyclic AMP caused by exposure to an intermediate concentration of glucagon. No inhibition of adenylate cyclase by insulin can be shown. Basal gluconeogenesis is not significantly depressed by calcium deficiency but stimulation by glucagon is reduced by 50%. Calcium deficiency does not reduce accumulation of cyclic AMP in response to glucagon but diminishes stimulation of gluconeogenesis by exogenous cyclic AMP. Glucagon has a rapid stimulatory effect on the flux of 45Ca2+ from medium to tissue.  相似文献   

12.
The studies reported here confirm the previously observed potent stimulus to growth hormone (GH) secretion by prostaglandin E1 (PGE1). Proportional increments in GH secretion were observed following in vitro addition of PGE1 over a concentration range of 10?7 to 10?5 M. Growth hormone secretion could not be further stimulated by higher concentrations of prostaglandin. Prostaglandin E1 also increased cyclic AMP concentration in the pituitary explants in a proportional fashion, which correlated closely with its potency as a growth hormone secretogogue. In order to define more precisely the mechanism by which prostaglandin acts, the effects of prostaglandin antagonist, 7-oxa-13-prostynoic acid, on GH secretion and cyclic AMP accumulation were investigated. Addition of the antagonist alone had no consistent effects on GH secretion or cyclic AMP levels in the pituitary. However, the antagonist significantly reduced the stimulation of hormone release and cyclic AMP accumulation found following addition of PGE1. Increasing the concentration of antagonist further diminished prostaglandin stimulated hormone release and nucleotide accumulation. The antagonist failed to block the stimulatory effects of theophylline and dibutyryl cyclic AMP on GH release, indicating that the inhibition observed occurred prior to intracellular accumulation of the cyclic nucleotide. These results are consistent with the hypothesis that a prostaglandin receptor on the pituitary somatotrope is linked to the adenyl cyclase-cyclic AMP system.  相似文献   

13.
We studied the effects of glucagon, dibutyryl cyclic AMP and dexamethasone on the rate of [(14)C]pantothenate conversion to CoA in adult rat liver parenchymal cells in primary culture. The presence of 30nm-glucagon increased the rate by about 1.5-fold relative to control cultures (range 1.4-2.3) and 2.4-fold relative to cultures containing 1-3m-i.u. of insulin/ml. The half-maximal effect was obtained at 3nm-glucagon. Dibutyryl cyclic AMP plus theophylline also enhanced the rate by about 1.5-fold. Dexamethasone acted synergistically with glucagon; glucagon at 0.3nm had no effect when added alone, but resulted in a 1.7-fold enhancement when added in the presence of dexamethasone (maximum effect at 50nm). The 1.4-fold enhancement caused by the addition of saturating glucagon concentrations was increased to a 3-fold overall enhancement by the addition of dexamethasone. However, dexamethasone added alone over the range 5nm to 5mum had no effect on the rate of [(14)C]pantothenate conversion to CoA. The stimulatory effect of dibutyryl cyclic AMP plus theophylline was also enhanced by the addition of dexamethasone. Changes in intracellular pantothenate concentration or radioactivity could not account for the stimulatory effects of glucagon, dibutyryl cyclic AMP or dexamethasone. Addition of 18mum-cycloheximide, an inhibitor of protein synthesis, decreased the rate of incorporation of [(14)C]pantothenate into CoA and the enhancement of this rate by glucagon and dibutyryl cyclic AMP plus theophylline in a reversible manner. These results demonstrate an influence of glucagon, dibutyryl cyclic AMP and glucocorticoids on the intracellular mechanism regulating total CoA concentrations in the liver.  相似文献   

14.
The cellular function of amylin is investigated in L6 myocytes, a rat skeletal muscle cell line. Both rat amylin and human amylin-amide acutely cause a dose-dependent increase in cyclic AMP formation in L6 myocytes. 100 nM amylin stimulates intracellular cyclic AMP concentrations 12-fold, whereas human amylin-amide at this concentration causes only a 2-fold increase. Up to 10 mM human amylin has no effect on cyclic AMP levels. Rat calcitonin gene-related peptide (CGRP) is more potent than amylin, causing a 60-fold increase over basal at 1 nM, with an EC50 value of 0.2 nM. The CGRP receptor antagonist, human CGRP8-37 (hCGRP8-37), completely blocks the stimulatory effect of both rat amylin and human amylin-amide on cyclic AMP production. [125I]CGRP binds specifically to a membrane fraction prepared from L6 [125I]CGRP with a Ki of 0.9 nM, while rat amylin also displaces [125I]CGRP with a Ki of 91 nM. Specific binding of [125I]CGRP to plasma membranes of rat liver and brain is also displaced by rat amylin with Ki values of 35 nM and 37 nM, respectively. In contrast, specific binding of [125I]amylin to numerous cells and tissues, under similar conditions, can not be demonstrated. These results suggest that the cellular effects and physiological actions of amylin may be mediated through receptors for CGRP.  相似文献   

15.
Vasoactive intestinal peptide (VIP) stimulated cyclic AMP production in rat peritoneal macrophages. The stimulatory effect of VIP was dependent on time, temperature and cell concentration, and was potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). At 15 degrees C, the response occurred in the 0.1-1000 nM range of VIP concentrations. Half maximal stimulation of cellular cyclic AMP (ED50) was obtained at 1.2 +/- 0.5 nM VIP, and maximal stimulation (about 3-fold basal level) was obtained between 100-1000 nM. The cyclic AMP system of rat peritoneal macrophages showed a high specificity for VIP. The order of potency observed in inducing cyclic AMP production was VIP greater than rGRF greater than hGRF greater than PHI greater than secretin. Glucagon, insulin, pancreastatin and octapeptide of cholecystokinin did not modify cyclic AMP levels at concentrations as high as 1 microM. The beta-adrenergic agonist isoproterenol increased the cyclic AMP production and show additive effect with VIP. Somatostatin inhibits the accumulation of cyclic AMP in the presence of both vasoactive intestinal peptide and isoproterenol. The finding of a VIP-stimulated cyclic AMP system in rat peritoneal macrophages, together with the previous characterization of high-affinity receptors for VIP in the same cell preparation, strongly suggest that VIP may be involved in the regulation of macrophage function.  相似文献   

16.
Synthetic human pancreatic growth hormone-releasing factor (hpGRF) (1–40)-NH2 stimulates adenylate cyclase activity in rat anterior pituitary particulate fraction at an ED50 value of approximately 150 nM. GTP more than doubles the stimulatory effect of hpGRF aand PGE2 on [32p] cyclic AMP formation. The present data show that hpGRF as well as PGE2, another potent stimulus of GH secretion, act at least partly, through GTP-dependent mechanisms in their coupling with adenylate cyclase.  相似文献   

17.
T Lin 《Life sciences》1983,33(25):2465-2471
Forskolin has a potent stimulatory effect on both cyclic AMP and testosterone formation by purified Leydig cells. Forskolin also markedly enhanced hCG-induced cyclic AMP formation, but maximal testosterone production remained unaltered. Cyclic AMP and testosterone responses of desensitized Leydig cells to in vitro hCG stimulation were completely lost. Cholera toxin-induced cyclic AMP formation was also reduced. However, forskolin was able to stimulate a 3.4-fold increment in cyclic AMP formation and potentiate hCG-induced cyclic AMP response by desensitized Leydig cells. The absolute cyclic AMP levels were significantly lower than in normal control cells. These results suggest that the catalytic unit remains intact in desensitized Leydig cells and the coupling between N-protein and catalytic unit is impaired. The N-protein is required for full expression of maximal response of Leydig cells to forskolin.  相似文献   

18.
F W Smellie  J W Daly  J N Wells 《Life sciences》1979,25(22):1917-1924
1-Isoamyl-3-isobutylxanthine (EC50 t 5 μM) potentiates by 2 to 6-fold the accumulations of cyclic AMP elicited in guinea pig cerebral cortical slices by norepinephrine, histamine, and adenosine. In addition, the xanthine derivative causes a 2 to 3-fold elevation of basal levels of cyclic AMP. 1-Isoamyl-3-isobutylxanthine has no effect on accumulations of cyclic AMP elicited by histamine or adenosine in the presence of a potent phosphodiesterase inhibitor, ZK 62771. The xanthine derivative retards the disappearance of cyclic AMP after a prior stimulation by adenosine. The results indicate that 1-isoamyl-3-isobutylxanthine is an extremely potent and effective inhibitor of phosphodiesterases involved in the regulation of cyclic AMP levels in guinea pig cerebral cortical slices. The 1-benzyl, 1-isoamyl, and 1-isobutyl derivatives of 3-isobutylxanthine potentiate the accumulation of cyclic AMP elicited by adenosine, while the 1-methyl derivative and 1-isoamyl-3-methylxanthine are inhibitory undoubtedly because of blockade of adenosine-receptors by these compounds. Xanthines with bulky 1- and 3- substituents appear to be relatively weak adenosine-antagonists and relatively specific and potent agents for inhibition of phosphodiesterases involved in cyclic AMP metabolism in brain tissue.  相似文献   

19.
Rat Graafian follicles isolated intact responded to 8-Br-cyclic GMP (0.3 and 1.0 mM) with increased prostaglandin E (PGE) production (4-fold and 8-fold, respectively) during a 6 h incubation. The effect of 8-Br-cyclic GMP was noted after a lag period of 2–4 h. 8-Br-cyclic AMP (1.0 mM) also stimulated PGE production (4-fold increase), while 8-Br-cyclic IMP, 8-Br-5′GMP and 8-Br-5′AMP were inactive in this respect. Actinomycin D (10 μg/ml) and cycloheximide (10 μg/ml) given simultaneously with 8-Br-cyclic GMP prevented the stimulatory effect of the cyclic nucleotide. The results suggest that cyclic GMP induces de novo synthesis of a macromolecular component of the ovarian prostaglandin synthetase system, and that this cyclic nucleotide, along with cyclic AMP, may play a role in the known stimulatory action of luteinizing hormone on follicular prostaglandin production.  相似文献   

20.
Prostaglandins (PGs) were found to lead to a marked stimulation of cyclic AMP accumulation in rat anterior pituitary gland in vitro in the following decreasing order of potency: PG E-1 E-2 GREATER THAN A-1 A-I GREATER THAN F-1ALPHA F-2ALPHA. The effect of PGs is potentiated by theophylline. The stimulatory effect of PGs on cyclic AMP accumulation is already detected 2min after the addition of 1-x 10-7 to 1-x 10-6 M PG E-2 and its maximal effect is reached after approximated 30 min of incubation, with a progressive decrease toward basal cyclic AMP levels at later time intervals. Increased intracellular cyclic AMP concentrations are accompanied by an increased release of the nucleotide into incubation medium. Complete removal of Ca-e+ from the incubation medium by addition of EGTA was found to increase the stimulatory effect of PG E-2 ON CYCLIC AMP accumulation. The action of PGs on hormonal release and cyclic AMP accumulation support the hypothesis of a role of PGs in the mechanism of anterior pituitary hormone (particularly growth hormone) release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号