首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmembrane helix (TMH) topology prediction is becoming a focal problem in bioinformatics because the structure of TM proteins is difficult to determine using experimental methods. Therefore, methods that can computationally predict the topology of helical membrane proteins are highly desirable. In this paper we introduce TMHindex, a method for detecting TMH segments using only the amino acid sequence information. Each amino acid in a protein sequence is represented by a Compositional Index, which is deduced from a combination of the difference in amino acid occurrences in TMH and non-TMH segments in training protein sequences and the amino acid composition information. Furthermore, a genetic algorithm was employed to find the optimal threshold value for the separation of TMH segments from non-TMH segments. The method successfully predicted 376 out of the 378 TMH segments in a dataset consisting of 70 test protein sequences. The sensitivity and specificity for classifying each amino acid in every protein sequence in the dataset was 0.901 and 0.865, respectively. To assess the generality of TMHindex, we also tested the approach on another standard 73-protein 3D helix dataset. TMHindex correctly predicted 91.8% of proteins based on TM segments. The level of the accuracy achieved using TMHindex in comparison to other recent approaches for predicting the topology of TM proteins is a strong argument in favor of our proposed method. Availability: The datasets, software together with supplementary materials are available at: http://faculty.uaeu.ac.ae/nzaki/TMHindex.htm.  相似文献   

2.
在基因组数据中,有20%~30%的产物被预测为跨膜蛋白,本文通过对膜蛋白拓扑结构预测方法进行分析,并评价其结果,为选择更合适的拓扑结构预测方法预测膜蛋白结构。通过对目前已有的拓扑结构预测方法的评价分析,可以为我们在实际工作中提供重要的参考。比如对一个未知拓扑结构的跨膜蛋白序列,我们可以先进行是否含有信号肽的预测,参考Polyphobius和SignalP两种方法,若两种方法预测结果不一致,综合上述对两种方法的评价,Polyphobius预测的综合能力较好,可取其预测的结果,一旦确定含有信号肽,则N端必然位于膜外侧。然后结合序列的长度,判断蛋白是单跨膜还是多重跨膜,即可参照上述评价结果,选择合适的拓扑结构预测方法进行预测。  相似文献   

3.
The topology of helical membrane proteins is generally defined during insertion of the transmembrane helices, yet it is now clear that it is possible for topology to change under unusual circumstances. It remains unclear, however, if topology reorientation is part of normal biogenesis. For dual topology dimer proteins such as the multidrug transporter EmrE, there may be evolutionary pressure to allow topology flipping so that the populations of both orientations can be equalized. We previously demonstrated that when EmrE is forced to insert in a distorted topology, topology flipping of the first transmembrane helix can occur during translation. Here, we show that topological malleability also extends to the C‐terminal helix and that even complete topology inversion of the entire EmrE protein can occur after the full protein is translated and inserted. Thus, topology rearrangements are possible during normal biogenesis. Wholesale topology flipping is remarkable given the physical constraints of the membrane and expands the range of possible membrane protein folding pathways, both productive and detrimental.  相似文献   

4.
Experimental structure determination continues to be challenging for membrane proteins. Computational prediction methods are therefore needed and widely used to supplement experimental data. Here, we re‐examined the state of the art in transmembrane helix prediction based on a nonredundant dataset with 190 high‐resolution structures. Analyzing 12 widely‐used and well‐known methods using a stringent performance measure, we largely confirmed the expected high level of performance. On the other hand, all methods performed worse for proteins that could not have been used for development. A few results stood out: First, all methods predicted proteins in eukaryotes better than those in bacteria. Second, methods worked less well for proteins with many transmembrane helices. Third, most methods correctly discriminated between soluble and transmembrane proteins. However, several older methods often mistook signal peptides for transmembrane helices. Some newer methods have overcome this shortcoming. In our hands, PolyPhobius and MEMSAT‐SVM outperformed other methods. Proteins 2015; 83:473–484. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
基于小波分析的膜蛋白跨膜区段序列分析和预测   总被引:2,自引:0,他引:2  
膜蛋白是一类结构独特的蛋白质,在各种细胞中普遍存在,发挥着重要的生理功能。目前仅有少数膜蛋白听结构被实验测出,因此用计算机预测膜蛋白的结构是蛋白质结构预测的主要研究内容之一。膜蛋白一般在膜上形成保守的跨膜螺旋结构,序列特征明显,比较适合用预测的方法确定跨膜螺旋区段的位置。国际上已有一些研究者用人工神经网络方法、多序列比对方法和统计方法进行了预测尝试,取得了一定的成功经验。我们对蛋白质序列数据库中的  相似文献   

6.
Wavelet change-point prediction of transmembrane proteins   总被引:3,自引:0,他引:3  
MOTIVATION: A non-parametric method, based on a wavelet data-dependent threshold technique for change-point analysis, is applied to predict location and topology of helices in transmembrane proteins. A new propensity scale generated from a transmembrane helix database is proposed. RESULTS: We show that wavelet change-point performs well for smoothing hydropathy and transmembrane profiles generated using different scales. We investigate which wavelet bases and threshold functions are overall most appropriate to detect transmembrane segments. Prediction accuracy is based on the analysis of two data sets used as standard benchmarks for transmembrane prediction algorithms. The analysis of a test set of 83 proteins results in accuracy per segment equal to 98.2%; the analysis of a 48 proteins blind-test set, i.e. containing proteins not used to generate the propensity scales, results in accuracy per segment equal to 97.4%. We believe that this method can also be applied to the detection of boundaries of other patterns such as G + Cisochores and dot-plots. AVAILABILITY: The transmembrane database, TMALN and source code are available upon request from the authors.  相似文献   

7.
Eukaryotic transmembrane helical (TMH) proteins perform a wide diversity of critical cellular functions, but remain structurally largely uncharacterized and their high-resolution structure prediction is currently hindered by the lack of close structural homologues. To address this problem, we present a novel and generic method for accurately modeling large TMH protein structures from distant homologues exhibiting distinct loop and TMH conformations. Models of the adenosine A2AR and chemokine CXCR4 receptors were first ranked in GPCR-DOCK blind prediction contests in the receptor structure accuracy category. In a benchmark of 50 TMH protein homolog pairs of diverse topology (from 5 to 12 TMHs), size (from 183 to 420 residues) and sequence identity (from 15% to 70%), the method improves most starting templates, and achieves near-atomic accuracy prediction of membrane-embedded regions. Unlike starting templates, the models are of suitable quality for computer-based protein engineering: redesigned models and redesigned X-ray structures exhibit very similar native interactions. The method should prove useful for the atom-level modeling and design of a large fraction of structurally uncharacterized TMH proteins from a wide range of structural homologues.  相似文献   

8.
We have developed reliability scores for five widely used membrane protein topology prediction methods, and have applied them both on a test set of 92 bacterial plasma membrane proteins with experimentally determined topologies and on all predicted helix bundle membrane proteins in three fully sequenced genomes: Escherichia coli, Saccharomyces cerevisiae and Caenorhabditis elegans. We show that the reliability scores work well for the TMHMM and MEMSAT methods, and that they allow the probability that the predicted topology is correct to be estimated for any protein. We further show that the available test set is biased towards high-scoring proteins when compared to the genome-wide data sets, and provide estimates for the expected prediction accuracy of TMHMM across the three genomes. Finally, we show that the performance of TMHMM is considerably better when limited experimental information (such as the in/out location of a protein's C terminus) is available, and estimate that at least ten percentage points in overall accuracy in whole-genome predictions can be gained in this way.  相似文献   

9.
MOTIVATION: Many important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion are mediated by membrane proteins. Unfortunately, as these proteins are not water soluble, it is extremely hard to experimentally determine their structure. Therefore, improved methods for predicting the structure of these proteins are vital in biological research. In order to improve transmembrane topology prediction, we evaluate the combined use of both integrated signal peptide prediction and evolutionary information in a single algorithm. RESULTS: A new method (MEMSAT3) for predicting transmembrane protein topology from sequence profiles is described and benchmarked with full cross-validation on a standard data set of 184 transmembrane proteins. The method is found to predict both the correct topology and the locations of transmembrane segments for 80% of the test set. This compares with accuracies of 62-72% for other popular methods on the same benchmark. By using a second neural network specifically to discriminate transmembrane from globular proteins, a very low overall false positive rate (0.5%) can also be achieved in detecting transmembrane proteins. AVAILABILITY: An implementation of the described method is available both as a web server (http://www.psipred.net) and as downloadable source code from http://bioinf.cs.ucl.ac.uk/memsat. Both the server and source code files are free to non-commercial users. Benchmark and training data are also available from http://bioinf.cs.ucl.ac.uk/memsat.  相似文献   

10.
Gromiha MM  Suwa M 《Proteins》2006,63(4):1031-1037
Discriminating outer membrane proteins (OMPs) from other folding types of globular and membrane proteins is an important task both for identifying OMPs from genomic sequences and for the successful prediction of their secondary and tertiary structures. In this work, we have analyzed the performance of different methods, based on Bayes rules, logistic functions, neural networks, support vector machines, decision trees, etc. for discriminating OMPs. We found that most of the machine learning techniques discriminate OMPs with similar accuracy. The neural network-based method could discriminate the OMPs from other proteins [globular/transmembrane helical (TMH)] at the fivefold cross-validation accuracy of 91.0% in a dataset of 1,088 proteins. The accuracy of discriminating globular proteins is 88.8% and that of TMH proteins is 93.7%. Further, the neural network method is tested with globular proteins belonging to 30 different folding types and it could successfully exclude 95% of the considered proteins. The proteins with SAM domain such as knottins, rubredoxin, and thioredoxin folds are eliminated with 100% accuracy. These accuracy levels are comparable to or better than other methods in the literature. We suggest that this method could be effectively used to discriminate OMPs and for detecting OMPs in genomic sequences.  相似文献   

11.
The increasing protein sequences from the genome project require theoretical methods to predict transmembrane helical segments (TMHs). So far, several prediction methods have been reported, but there are some deficiencies in prediction accuracy and adaptability in these methods. In this paper, a method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1KQG is chosen as an example to describe the prediction process by this method. 80 proteins with known 3D structure from Mptopo database are chosen at random as data sets (including 325 TMHs) and 80 sequences are divided into 13 groups according to their function and type. TMHs prediction is carried out for each group of membrane protein sequences and obtain satisfactory result. To verify the feasibility of this method, 80 membrane protein sequences are treated as test sets, 308 TMHs can be predicted and the prediction accuracy is 96.3%. Compared with the main prediction results of seven popular prediction methods, the obtained results indicate that the proposed method in this paper has higher prediction accuracy.  相似文献   

12.
We present the results of applying a novel knowledge-based method (FILM) to the prediction of small membrane protein structures. The basis of the method is the addition of a membrane potential to the energy terms (pairwise, solvation, steric, and hydrogen bonding) of a previously developed ab initio technique for the prediction of tertiary structure of globular proteins (FRAGFOLD). The method is based on the assembly of supersecondary structural fragments taken from a library of highly resolved protein structures using a standard simulated annealing algorithm. The membrane potential has been derived by the statistical analysis of a data set made of 640 transmembrane helices with experimentally defined topology and belonging to 133 proteins extracted from the SWISS-PROT database. Results obtained by applying the method to small membrane proteins of known 3D structure show that the method is able to predict, at a reasonable accuracy level, both the helix topology and the conformations of these proteins.  相似文献   

13.
Helical membrane proteins are more tightly packed and the packing interactions are more diverse than those found in helical soluble proteins. Based on a linear correlation between amino acid packing values and interhelical propensity, we propose the concept of a helix packing moment to predict the orientation of helices in helical membrane proteins and membrane protein complexes. We show that the helix packing moment correlates with the helix interfaces of helix dimers of single pass membrane proteins of known structure. Helix packing moments are also shown to help identify the packing interfaces in membrane proteins with multiple transmembrane helices, where a single helix can have multiple contact surfaces. Analyses are described on class A G protein-coupled receptors (GPCRs) with seven transmembrane helices. We show that the helix packing moments are conserved across the class A family of GPCRs and correspond to key structural contacts in rhodopsin. These contacts are distinct from the highly conserved signature motifs of GPCRs and have not previously been recognized. The specific amino acid types involved in these contacts, however, are not necessarily conserved between subfamilies of GPCRs, indicating that the same protein architecture can be supported by a diverse set of interactions. In GPCRs, as well as membrane channels and transporters, amino acid residues with small side-chains (Gly, Ala, Ser, Cys) allow tight helix packing by mediating strong van der Waals interactions between helices. Closely packed helices, in turn, facilitate interhelical hydrogen bonding of both weakly polar (Ser, Thr, Cys) and strongly polar (Asn, Gln, Glu, Asp, His, Arg, Lys) amino acid residues. We propose the use of the helix packing moment as a complementary tool to the helical hydrophobic moment in the analysis of transmembrane sequences.  相似文献   

14.
Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α‐helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three‐state secondary structure prediction, and 94.8% for three‐state transmembrane span prediction. These accuracies are comparable to state‐of‐the‐art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org . Proteins 2013; 81:1127–1140. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
Shen H  Chou JJ 《PloS one》2008,3(6):e2399
Prediction of transmembrane helices (TMH) in alpha helical membrane proteins provides valuable information about the protein topology when the high resolution structures are not available. Many predictors have been developed based on either amino acid hydrophobicity scale or pure statistical approaches. While these predictors perform reasonably well in identifying the number of TMHs in a protein, they are generally inaccurate in predicting the ends of TMHs, or TMHs of unusual length. To improve the accuracy of TMH detection, we developed a machine-learning based predictor, MemBrain, which integrates a number of modern bioinformatics approaches including sequence representation by multiple sequence alignment matrix, the optimized evidence-theoretic K-nearest neighbor prediction algorithm, fusion of multiple prediction window sizes, and classification by dynamic threshold. MemBrain demonstrates an overall improvement of about 20% in prediction accuracy, particularly, in predicting the ends of TMHs and TMHs that are shorter than 15 residues. It also has the capability to detect N-terminal signal peptides. The MemBrain predictor is a useful sequence-based analysis tool for functional and structural characterization of helical membrane proteins; it is freely available at http://chou.med.harvard.edu/bioinf/MemBrain/.  相似文献   

16.
Cation-pi interactions play an important role to the stability of protein structures. In this work, we analyze the influence of cation-pi interactions in three-dimensional structures of membrane proteins. We found that transmembrane strand (TMS) proteins have more number of cation-pi interactions than transmembrane helical (TMH) proteins. In TMH proteins, both the positively charged residues Lys and Arg equally experience favorable cation-pi interactions whereas in TMS proteins, Arg is more likely than Lys to be in such interactions. There is no relationship between number of cation-pi interactions and number of residues in TMH proteins whereas a good correlation was observed in TMS proteins. The average cation-pi interaction energy for TMH proteins is -16 kcal/mol and that for TMS proteins is -27 kcal/mol. The pair-wise cation-pi interaction energy between aromatic and positively charged residues showed that Lys-Trp energy is stronger in TMS proteins than TMH proteins; Arg-Phe, Arg-Tyr and Lys-Phe have higher energy in TMH proteins than TMS proteins. The decomposition of energies into electrostatic and van der Waals revealed that the contribution from electrostatic energy is twice as that from van der Waals energy in both TMH and TMS proteins. The results obtained in the present study would be helpful to understand the contribution of cation-pi interactions to the stability of membrane proteins.  相似文献   

17.
Topology predictions for integral membrane proteins can be substantially improved if parts of the protein can be constrained to a given in/out location relative to the membrane using experimental data or other information. Here, we have identified a set of 367 domains in the SMART database that, when found in soluble proteins, have compartment-specific localization of a kind relevant for membrane protein topology prediction. Using these domains as prediction constraints, we are able to provide high-quality topology models for 11% of the membrane proteins extracted from 38 eukaryotic genomes. Two-thirds of these proteins are single spanning, a group of proteins for which current topology prediction methods perform particularly poorly.  相似文献   

18.
Monné M  von Heijne G 《FEBS letters》2001,496(2-3):96-100
We have studied the effects of 'hydrophobic mismatch' between a poly-Leu transmembrane helix (TMH) and the ER membrane using a glycosylation mapping approach. The simplest interpretation of our results is that the lumenal end of the TMH is located deeper in the membrane for both short (negative mismatch) and long (positive mismatch) TMHs than for poly-Leu segments of intermediate length. We further find that the position-specific effect of Lys residues on the location of short TMHs in the membrane varies with an apparent helical periodicity when the Lys residue is moved along the poly-Leu stretch. We discuss these findings in the context of models for peptide-lipid interactions during hydrophobic mismatch.  相似文献   

19.
The analysis of inter-residue interactions in protein structures provides considerable insight to understand their folding and stability. We have previously analyzed the role of medium- and long-range interactions in the folding of globular proteins. In this work, we study the distinct role of such interactions in the three-dimensional structures of membrane proteins. We observed a higher number of long-range contacts in the termini of transmembrane helical (TMH) segments, implying their role in the stabilization of helix-helix interactions. The transmembrane strand (TMS) proteins are having appreciably higher long-range contacts than that in all-beta class of globular proteins, indicating closer packing of the strands in TMS proteins. The residues in membrane spanning segments of TMH proteins have 1.3 times higher medium-range contacts than long-range contacts whereas that of TMS proteins have 14 times higher long-range contacts than medium-range contacts. Residue-wise analysis indicates that in TMH proteins, the residues Cys, Glu, Gly, Pro, Gln, Ser and Tyr have higher long-range contacts than medium-range contacts in contrast with all-alpha class of globular proteins. The charged residue pairs have higher medium-range contacts in all-alpha proteins, whereas hydrophobic residue pairs are dominant in TMH proteins. The information on the preference of residue pairs to form medium-range contacts has been successfully used to discriminate the TMH proteins from all-alpha proteins. The statistical significance of the results obtained from the present study has been verified using randomized structures of TMH and TMS protein templates.  相似文献   

20.
An hypothesis is tested that individual peptides corresponding to the transmembrane helices of the membrane protein, rhodopsin, would form helices in solution similar to those in the native protein. Peptides containing the sequences of helices 1, 4 and 5 of rhodopsin were synthesized. Two peptides, with overlapping sequences at their termini, were synthesized to cover each of the helices. The peptides from helix 1 and helix 4 were helical throughout most of their length. The N- and C-termini of all the peptides were disordered and proline caused opening of the helical structure in both helix 1 and helix 4. The peptides from helix 5 were helical in the middle segment of each peptide, with larger disordered regions in the N- and C-termini than for helices 1 and 4. These observations show that there is a strong helical propensity in the amino acid sequences corresponding to the transmembrane domain of this G-protein coupled receptor. In the case of the peptides from helix 4, it was possible to superimpose the structures of the overlapping sequences to produce a construct covering the whole of the sequence of helix 4 of rhodopsin. As similar superposition for the peptides from helix 1 also produced a construct, but somewhat less successfully because of the disordering in the region of sequence overlap. This latter problem was more severe for helix 5 and therefore a single peptide was synthesized for the entire sequence of this helix, and its structure determined. It proved to be helical throughout. Comparison of all these structures with the recent crystal structure of rhodopsin revealed that the peptide structures mimicked the structures seen in the whole protein. Thus similar studies of peptides may provide useful information on the secondary structure of other transmembrane proteins built around helical bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号