首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The UV-susceptibility of zoospores of the lower sublittoral kelp Laminaria digitata was studied in the laboratory under varying fluence of spectral irradiance consisting of photosynthetically active radiation (PAR, 400–700 nm; = P), PAR + UV-A radiation (UV-A, 320–400 nm; = PA), and PAR + UV-A + UV-B radiation (UV-B, 280–320 nm; = PAB). In vivo absorption of phlorotannin, localisation of phlorotannin-containing physodes, structural changes, DNA damage and repair, photosynthesis and germination of zoospores were measured after exposure treatments and after 2–6 days of recovery in dim white light. Photodegradation of phlorotannins was observed after extended exposure to ultraviolet radiation (UVR). The UV-protective function of extra- and intracellular phlorotannins was, therefore, observed only after 8 h, but not after 16-h UVR exposure. The energetic cost of photoprotection may have caused the delay in ontogenic development of zoospores after 8-h exposure to PA and PAB treatment; longer exposure time corresponding to 16-h PA and PAB treatment eventually lead to cell degeneration at 6 days post-cultivation. The formation of cyclobutane–pyrimidine dimers (CPDs), as indicator of DNA damage, was not blocked by the UV-absorbing phlorotannins during the 16-h PAB exposure and the inability for DNA damage repair was likely responsible for low photosynthetic recovery and spore mortality. The higher sensitivity of L. digitata zoospores to UVR compared to other kelps such as Saccorhiza dermatodea and Alaria esculenta confirmed our hypothesis that the depth distribution of adult sporophytes in the field correlates to the sensitivity of their corresponding early life history stages to different stress factors in general and UVR in particular.  相似文献   

2.
Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines (Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280–320 nm) can affect plant–disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280–400 nm), spectral UV-B and UV-A (320–400 nm), the biological effective UVBE, as well as the PAR (400–700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.  相似文献   

3.
Seasonal reproduction in some Arctic Laminariales coincides with increased UV-B radiation due to stratospheric ozone depletion and relatively high water temperatures during polar spring. To find out the capacity to cope with different spectral irradiance, the kinetics of photosynthetic recovery was investigated in zoospores of four Arctic species of the order Laminariales, the kelps Saccorhiza dermatodea, Alaria esculenta, Laminaria digitata, and Laminaria saccharina. The physiology of light harvesting, changes in photosynthetic efficiency and kinetics of photosynthetic recovery were measured by in vivo fluorescence changes of Photosystem II (PSII). Saturation irradiance of freshly released spores showed minimal I k values (photon fluence rate where initial slope intersects horizontal asymptote of the curve) values ranging from 13 to 18 μmol photons m−2 s−1 among species collected at different depths, confirming that spores are low-light adapted. Exposure to different radiation spectra consisting of photosynthetically active radiation (PAR; 400–700 nm), PAR+UV-A radiation (UV-A; 320–400 nm), and PAR+ UV-A+UV-B radiation (UV-B; 280–320 nm) showed that the cumulative effects of increasing PAR fluence and the additional effect of UV-A and UV-B radiations on photoinhibition of photosynthesis are species specific. After long exposures, Laminaria saccharina was more sensitive to the different light treatments than the other three species investigated. Kinetics of recovery in zoospores showed a fast phase in S. dermatodea, which indicates a reduction of the photoprotective process while a slow phase in L. saccharina indicates recovery from severe photodamage. This first attempt to study photoinhibition and kinetics of recovery in zoospores showed that zoospores are the stage in the life history of seaweeds most susceptible to light stress and that ultraviolet radiation (UVR) effectively delays photosynthetic recovery. The viability of spores is important on the recruitment of the gametophytic and sporophytic life stages. The impact of UVR on the zoospores is related to the vertical depth distribution of the large sporophytes in the field.  相似文献   

4.
The effects of different wavebands of UV radiation on photosynthesis and the expression and abundance of photosynthetic proteins in oilseed rape (Brassica napus L. cv. Rebel) were investigated. Plants were grown outdoors under natural radiation (52° N, 0° E) supplemented with six wavebands of UV radiation (0.4 Wm−2) between 313 nm and 356 nm. A control treatment was centred at 343 nm. Exposure to supplementary UV-A radiation (320–400 nm) had no significant effects, however UV-B radiation, centred at 313 nm, caused a marked reduction in photosynthesis. This decrease was related to a reduction in the initial carboxylation velocity of Rubisco which was further correlated with a large reduction in the expression and abundance of both large and small subunits of Rubisco. These results indicate a molecular mechanism behind UV-B induced reductions in photosynthesis per unit area in plants grown under field conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The respective ratio of photosynthetically active to ultraviolet radiation is of crucial importance to results obtained in ultraviolet (UV)‐research on photoautotrophic organisms. Specimens of the green macroalga Ulva lactuca L. were exposed to a constant irradiance of UV‐radiation at increasing irradiances of photosynthetically active radiation (PAR). The effects of experimental irradiance and spectral composition on photoinhibition of photosynthesis and its recovery were monitored by chlorophyll fluorescence measurements and the activity of the xanthophyll cycle was assessed by high performance liquid chromatography‐(HPLC) based pigment analysis. Results indicate a UV‐induced delay in recovery from PAR‐induced photoinhibition and a deceleration of violaxanthin conversion within the xanthophyll cycle due to the presence of UV‐radiation. Also the concentration of the protective pigment lutein increased considerably and could be indicative of the existence of an additional light‐protective mechanism, as, for example, the lutein‐epoxid cycle in Ulva. In total, results clearly show that the extent of UV‐induced inhibition of photosynthesis to be found in UV‐exposure experiments is highly dependent on the irradiance of background photosynthetically active radiation: with increasing irradiance of PAR the UV‐effects were diminished. Exemplified by the green algae Ulva lactuca this study demonstrates the crucial importance of the ratios of PAR:UV applied in UV‐research, particularly when conducting laboratory experiments in an ecological context.  相似文献   

6.
Nannochloropsis, a green microalga, is a source for commercially valuable compounds as extensively described and, in particular, is recognised as a good potential source of eicosapentaenoic acid (20:5ϖ3), an important polyunsaturated fatty acid for human consumption for prevention of several diseases. Climate change might include variation in the ultraviolet (UV) levels as one of the consequences derived from the anthropogenic activity. This paper shows the response of Nannochloropsis cultures exposed for 7 days to UV-A (320–400 nm) added to photosynthetically active radiation (PAR; 400–700 nm). Growth rates and photosynthetic activity were assessed to determine the impact of UV-A increased levels on the cell growth and basic metabolism activity. Xanthophyll pigments (zeaxanthin and violaxanthin), carotenoids (canthaxanthin and β-carotene) and polyunsaturated fatty acids (myristic, palmitic, palmitoleic, arachidonic and eicosapentaenoic acids) were measured for assessing the antioxidant response of the microalgae to added UV-A radiation to PAR. The results show that the modulated use of UV-A radiations can lead to increased growth rates, which are sustained in time by an increased light transduction activity. The expected antioxidant response to the incident UV-A radiation consisted of increases in zeaxanthin and β-carotene contents—synthesis of antioxidant carotenoids—and increases in the saturated fatty acids to polyunsaturated fatty acids ratio. The results suggest that modulated UV-A radiation can be used as a tool to stimulate value molecules accumulation in microalgae through an enhanced both light transduction process and antioxidant response, while sustaining cell growth.  相似文献   

7.
Abstract Stress physiology on the reproductive cells of Antarctic macroalgae remained unstudied. Ascoseira mirabilis is endemic to the Antarctic region, an isolated ecosystem exposed to extreme environmental conditions. Moreover, stratospheric ozone depletion leads to increasing ultraviolet radiation (280–400 nm) at the earth's surface, thus it is necessary to investigate the capacity of reproductive cells to cope with different UV irradiances. This study is aimed to investigate the impact of exposure to different spectral irradiance on the photosynthetic performance, DNA damage and gamete morphology of the A. mirabilis. Gametangia, gametes and zygotes of the upper sublittoral brown alga A. mirabilis were exposed to photosynthetically active radiation (PAR = P; 400–700 nm), P + UV‐A radiation (UV‐A, 320–400 nm) and P + UV‐A + UV‐B radiation (UV‐B, 280–320 nm). Rapid photosynthesis versus irradiance curves of freshly released propagules were measured. Photosynthetic efficiencies and DNA damage (in terms of cyclobutane pyrimidine dimers) were determined after 1, 2, 4 and 8 h exposure as well as after 2 days of recovery in dim white light. Saturation irradiance (Ik) in freshly released propagules was 52 μmol photons m−2 s−1. Exposure for 1 h under 22 μmol photons m−2 s−1 of PAR significantly reduced the optimum quantum yield (Fv/Fm), suggesting that propagules are low light adapted. Furthermore, UVR significantly contributed to the photoinhibition of photosynthesis. Increasing dose as a function of exposure time additionally exacerbated the effects of different light treatments. The amount of DNA damage increased with the UV‐B dose but an efficient repair mechanism was observed in gametes pre‐exposed to a dose lower than 5.8 × 103 J m−2 of UV‐B. The results of this study demonstrate the negative impact of UV‐B radiation. However, gametes of A. mirabilis are capable of photosynthetic recovery and DNA repair when the stress factor is removed. This capacity was observed to be dependent on the fitness of the parental sporophyte.  相似文献   

8.
We assessed the influence of ultraviolet radiation (UV) on net photosynthetic CO2 assimilation rate (Pn) in Sorghum bicolor, with particular attention to examining whether UV can enhance Pn via direct absorption of UV and absorption of UV‐induced blue fluorescence by photosynthetic pigments. A polychromatic UV response spectrum of leaves was constructed by measuring Pn under different UV supplements using filters that had sharp transmission cut‐offs from 280 to 382 nm, against a background of non‐saturating visible light. When the abaxial surface was irradiated, Pn averaged 4.6% higher with the UV supplement that cut‐off UV at 311 nm, compared to lower and higher UV wavelength supplements. This former supplement differed from higher wavelength supplements by primarily providing more UV between 320 and 350 nm. To assess the possibility of direct absorption of UV by photosynthetic pigments, we measured the absorbance of extracted chlorophylls. Chlorophyll a had absorbance peaks at 340 and 389 nm that were 49 and 72% of that at the sorét peak. Chlorophyll b had absorbance peaks at 315 and 346 nm that were both 35% of that at the sorét peak. Since the epidermis transmits some UV, the strong UV absorbance of chlorophyll implies a potential role for irradiance beyond the bounds of the conventionally defined photosynthetically active radiation waveband (400–700 nm). To assess the role of absorption of UV‐induced blue fluorescence, we measured the UV‐induced fluorescence excitation and emission spectra of leaves. Abaxial excitation peaked at 328 nm, while emission peaked at 446 nm. In this analysis, we used our abaxial fluorescence excitation spectrum and the UV photosynthetic inhibition spectrum of Caldwell et al. (1986) to weight the UV irradiance with each cut‐off filter, thereby estimating the potential contribution of UV‐induced blue fluorescence to photosynthesis and the inhibitory effects of UV irradiance on photosynthesis, respectively. With a non‐saturating visible background, we estimate that the absorption of UV‐induced blue fluorescence and the direct absorption of UV by photosynthetic pigments maximally enhanced photosynthesis by about 1% each with the UV supplement that cut‐off UV at 311 nm. We suggest that a portion of the incident UV on the S. bicolor leaves was used to drive photosynthesis.  相似文献   

9.
It is well known that light and nutrients are essential to plants; however, there are few investigations in which these have been studied in combination on macroalgae, especially when solar ultraviolet radiation (UVR) is concerned. We cultured the red alga Gracilaria lemaneiformis (Bory) at different nitrate concentrations and light levels with or without UVR for 24 days. The results showed that nitrate supply markedly enhanced the growth and photosynthesis, increased the absorptivity of UV‐absorbing compounds (UVACs), and decreased photoinhibition in the presence of UVR. The thalli that received photosynthetically active radiation (PAR) treatment exhibited higher growth rates than those that received PAR + UVR at ambient or enhanced nitrate concentrations. However, under PAR + UVR treatment, the absorptivity of UVACs was higher than that of PAR and fluctuated with light levels. UVR was found to reduce the maximal net photosynthetic rate, apparent photosynthetic efficiency and light‐saturating irradiance while increasing the dark respiration rate, and inducing higher inhibition of growth and photosynthesis under high light versus under low light. Ultraviolet B significantly induced the synthesis of UVACs but led to higher inhibition on growth and photosynthesis than ultraviolet A.  相似文献   

10.
In situ experiments were conducted at various depths in the water column to determine the effects of solar ultraviolet radiation (UVR, 280–400 nm) on photosynthesis of natural phytoplankton assemblages from the subtropical Lake La Angostura (Argentina, 26°45′ S; 65°37° W, 1980 m asl.). Water samples were taken daily and incubated under three radiation treatments: (a) Samples exposed to UVR + Photosynthetic Available Radiation (PAR) – PAB treatment (280–700 nm); (b) Samples exposed to ultraviolet-A radiation (UV-A) + PAR – PA treatment (320–700 nm), and, (c) Samples exposed to PAR only – P treatment (400–700 nm). Additionally, depth profiles were done to determine different physical (i.e., temperature and underwater radiation field) and biological characteristics of the water column – photosynthetic pigments, UV-absorbing compounds, cell concentration, deoxyribonucleic acid (DNA) and cyclobutane pyrimidine dimers (CPDs). The effects of UVR on natural phytoplankton assemblages were significant only in the first 50 cm of the water column, causing a decrease in photosynthetic rates of 36 and 20% due to UV-A and ultraviolet-B radiation (UV-B), respectively; below this depth, however, there were no significant differences between radiation treatments. Concentration of CPDs per mega base of DNA in natural phytoplankton was low, <27 CPDs MB−1 between 0 and 4 m. Data on net DNA damage, together with that on mixing conditions of the water column, suggest that mixing can favour phytoplankton by allowing cells to be transported to depths where active repair can take place. This mechanism to reduce UVR-induced DNA damage would be of great advantage for these assemblages dominated by small cyanobacteria and chlorophytes where UV-absorbing compounds that could act as sunscreens are virtually absent.  相似文献   

11.
We irradiated captive juvenile Euphausia superba in the laboratory with lower than spring surface levels of ultraviolet-B, ultraviolet-A and photosynthetically active radiation, in order to examine their response in terms of mortality and generalised activity. Levels of photosynthetically active radiation 3–5 times below surface irradiance caused krill to die within a week, while animals in the dark survived. Addition of ultraviolet-B typical of depths up to 15 m were found to significantly accelerate mortality and lead to a drop in activity in all experiments. A drop in activity in krill exposed to ultraviolet-A wavelengths was evident without an increase in mortality. The protein content of animals from various treatments was found not to vary. Accepted: 10 January 1999  相似文献   

12.
To assess the short- and long-term impacts of UV radiation (UVR, 280–400 nm) on the microalga Scrippsiella trochoidea, we exposed cells to three different radiation treatments (PAB: 280–700 nm, PA: 320–700 nm, and P: 400–700 nm). A significant decrease in the photochemical efficiency (ΦPSII) at high irradiance (100% of incident solar radiation, 216.0 W m−2) was observed. Photoinhibition was reduced from 62.7 to 10.9% when the cells were placed in 12% solar radiation (26.1 W m−2). In long-term experiments (11 days) using batch cultures, cell densities during the first 5 days were decreased under treaments P, PA, and PAB, reflecting a change in the irradiance experienced in the laboratory to that of incident solar irradiance. Thereafter, specific growth rates increased and UV-induced photoinhibition decreased, indicating acclimation to solar UV. Cells were found to exhibit both higher ratios of repair to UV-related damage, shorter period for recovery and increased concentrations of UV-absorbing compounds (UVabc), whose maximum absorption was found to be at 336 nm. Our data indicate that S. trochoidea is sensitive to ultraviolet radiation, but was able to acclimate relatively rapidly (ca. 6 days) by synthesizing UVabc and by increasing the rates of repair processes of D1 protein in PSII.  相似文献   

13.
 In vivo absorbance spectra were obtained for 12 species of tropical macroalgae. Absorbance of UV irradiance was greater than absorbance of photosynthetically active radiation in most algal taxa. UV irradiance may be pre-emptively captured by UV absorbing compounds as indicated by the significant relationship between in vivo and extract absorbance characteristics. In vivo and extract absorbance characteristics indicated that concentrations of UV absorbing compounds were highest among rhodophytes. Additionally, a marked consistency was observed in the visible spectral region, 400 to 750 nm, for in vivo absorbance and fourth derivative maxima for species within specific taxonomic divisions. For Gracilaria salicornia, pigment and photosynthetic performance acclimation paralleled the sun to shade irradiance gradient established by its mat-like morphology. Regression relationships of in vivo absorbance for phycoerythrin and carotenoid-specific maxima with I k , I c , and P max were significant and may have utility in modeling algal photosynthetic parameters. Accepted: 8 July 1996  相似文献   

14.
Photosynthesis–irradiance relationships of macroalgal communities and thalli of dominant species in shallow coastal Danish waters were measured over a full year to test how well community production can be predicted from environmental (incident irradiance and temperature) and community variables (canopy absorptance, species number and thallus metabolism). Detached thalli of dominant species performed optimally at different times of the year, but showed no general seasonal changes in photosynthetic features. Production capacity of communities at high light varied only 1.8-fold over the year and was unrelated to incident irradiance, temperature and mean thallus photosynthesis, while community absorptance was a highly significant predictor. Actual rates of community photosynthesis were closely related to incident and absorbed irradiance alone. Community absorptance in turn was correlated to canopy height and species richness. The close relationship of community photosynthesis to irradiance is due to the fact that (1) large differences in thallus photosynthesis of individual species are averaged out in communities composed of several species, (2) seasonal replacement of species keeps communities metabolically active, and (3) maximum possible absorptance at 100% constrains the total photosynthesis of all species. Our results imply that the photosynthetic production of macroalgal communities is more predictable than their complex and dynamic nature suggest and that predictions are possible over wide spatial scales in coastal waters by measurements of vegetation cover, incoming irradiance and canopy absorptance.  相似文献   

15.
The effect of ultraviolet radiation on diel changes and depth profiles of phytoplankton photosynthesis was studied in four temperate freshwater lakes. Photosynthetic oxygen production was determined by incubating lake water in light and dark bottles under various weather conditions. Half the light bottles were wrapped with sheets of vinyl chloride film to exclude light with wavelengths shorter than 400 nm. The inhibition of photosynthesis due to UV-A (320–400 nm) was observed during most of the daytime and was very strong around noon on both sunny and cloudy days. On sunny days, when the surface waters of the highly eutrophic Lake Suwa and Senzoku Pond were dominated by denseMicrocystis populations, cumulative daily production at the surface, estimated from the incubation of bottles from which UV-A was excluded by the vinyl film, were about double the rates obtained from glass bottles in which UV-A was present. The UV-A inhibition was detected from the surface toca 20 cm depth in hypereutrophic lakes and at depths greater than 50 cm in mesotrophic lakes. Analysis of the photosynthesis-irradiance (P-I) relationship obtained in the present study shows β, a parameter that describes photo-inhibition, is higher in the presence of UV-A than in its absence. This indicates that UV-A is the major cause of photo-inhibition of phytoplankton photosynthesis.  相似文献   

16.
Abstract Zonations of photosynthesis and photopigments in artificial cyanobacterial mats were studied with (i) oxygen and pH microsensors, (ii) fiber-optic microprobes for field radiance, scalar irradiance, and PSII fluorescence, and (iii) a light microscope equipped with a spectrometer for spectral absorbance and fluorescence measurements. Our analysis revealed the presence of several distinct 1–2 mm thick cyanobacterial layers mixed with patches of anoxygenic photosynthetic bacteria. Strong attenuation of visible light confined the euphotic zone to the uppermost 3 mm of the mat, where oxygen levels of 3–4 times air saturation and a pH peak of up to pH 8.8 were observed under saturating irradiance (413 μmol photon m−2 s−1). Oxygen penetration was 5 mm in light and decreased to 1 mm in darkness. Volumetric oxygen consumption in the photic and aphotic zones of illuminated mat was 5.5 and 2.9 times higher, respectively, than oxygen consumption in dark incubated mats. Scalar irradiance reached 100–150% of incident irradiance in the upper 0.5 mm of the mat due to intense scattering in the matrix of cells, exopolymers, and carbonate precipitates. In deeper mat layers scalar irradiance decreased nearly exponentially, and highest attenuation coefficients of 6–7 mm−1 were found in cyanobacterial layers, where photosynthesis and photopigment fluorescence also peaked. Visible light was attenuated >100 times more strongly than near infrared light. Microscope spectrometry on thin sections of mats allowed detailed spectral absorbance and fluorescence measurements at defined positions relative to the mat surface. Besides strong spectral signals of cyanobacterial photopigments (Chl a and phycobiliproteins), the presence of both green and purple photosynthetic bacteria was evident from spectral signals of Bchl a and Bchl c. Microprofiles of photopigment absorbance correlated well with microdistributions of phototrophs determined in an accompanying study. Received: 20 December 1999; Accepted: 10 June 2000; Online Publication: 28 August 2000  相似文献   

17.
Zacher K  Roleda MY  Hanelt D  Wiencke C 《Planta》2007,225(6):1505-1516
Ozone depletion is highest during spring and summer in Antarctica, coinciding with the seasonal reproduction of most macroalgae. Propagules are the life-stage of an alga most susceptible to environmental perturbations therefore, reproductive cells of three intertidal macroalgal species Adenocystis utricularis (Bory) Skottsberg, Monostroma hariotii Gain, and Porphyra endiviifolium (A and E Gepp) Chamberlain were exposed to photosynthetically active radiation (PAR), PAR + UV-A and PAR + UV-A + UV-B radiation in the laboratory. During 1, 2, 4, and 8 h of exposure and after 48 h of recovery, photosynthetic efficiency, and DNA damage were determined. Saturation irradiance of freshly released propagules varied between 33 and 83 μmol photons m−2 s−1 with lowest values in P. endiviifolium and highest values in M. hariotii. Exposure to 22 μmol photons m−2 s−1 PAR significantly reduced photosynthetic efficiency in P. endiviifolium and M. hariotii, but not in A. utricularis. UV radiation (UVR) further decreased the photosynthetic efficiency in all species but all propagules recovered completely after 48 h. DNA damage was minimal or not existing. Repeated exposure of A. utricularis spores to 4 h of UVR daily did not show any acclimation of photosynthesis to UVR but fully recovered after 20 h. UVR effects on photosynthesis are shown to be species-specific. Among the tested species, A. utricularis propagules were the most light adapted. Propagules obviously possess good repair and protective mechanisms. Our study indicates that the applied UV dose has no long-lasting negative effects on the propagules, a precondition for the ecological success of macroalgal species in the intertidal.  相似文献   

18.
The photosynthetic performance of an epilithic cyano-bacterial biofilm was studied in relation to the in situ light field by the use of combined microsensor measurements of O2, photosynthesis, and spectral scalar irradiance. The high density of the dominant filamentous cyanobacteria (Oscillatoria sp.) embedded in a matrix of exopolymers and bacteria resulted in a photic zone of < 0.7 mm. At the biofilm surface, the prevailing irradiance and spectral composition were significantly different from the incident light. Multiple scattering led to an intensity maximum for photic light (400–700 nm) of ca. 120% of incident quantum irradiance at the biofilm surface. At the bottom of the euphotic zone in the biofilm, light was attenuated strongly to < 5–10% of the incident surface irradiance. Strong spectral signals from chlorophyll a (440 and 675 nm) and phycobilins (phycoerythrin 540–570 nm, phycocyanin 615–625 nm) were observed as distinct maxima in the scalar irradiance attenuation spectra in the upper 0.0–0.5 mm of the biofilm. The action spectrum for photosynthesis in the cyanobacterial layer revealed peak photosynthetic activity at absorption wavelengths of phycobilins, whereas only low photosynthesis rates were induced by light absorption of carotenoids (450–550 nm). Respiration rates in light- and dark-incubated biofilms were determined using simple flux calculations on measured O2 concentration profiles and photosynthetic rates. A significantly higher areal O2 consumption was found in illuminated biofilms than in dark-incubated biofilms. Although photorespiration accounted for part of the increase, the enhanced areal O2 consumption of illuminated biofilms could also be ascribed to a deeper oxygen penetration in light as well as an enhanced volumetric O2 respiration in and below the photic zone. Gross photosynthesis was largely unaffected by increasing flow velocities, whereas the O2 flux out of the photic zone, that is, net photosynthesis, increased with flow velocity. Consequently, the amount of produced O2 consumed within the biofilm decreased with increasing flow velocity. Our data indicated a close coupling of photosynthesis and respiration in biofilms, where the dissolved inorganic carbon requirement of the photo-synthetic population may largely be covered by the respiration of closely associated populations of heterotrophic bacteria consuming a significant part of the photosynthetically produced oxygen and organic carbon.  相似文献   

19.
Ultraviolet radiation,ozone depletion,and marine photosynthesis   总被引:5,自引:0,他引:5  
Concerns about stratospheric ozone depletion have stimulated interest in the effects of UVB radiation (280–320 nm) on marine phytoplankton. Research has shown that phytoplankton photosynthesis can be severely inhibited by surface irradiance and that much of the effect is due to UV radiation. Quantitative generalization of these results requires a biological weighting function (BWF) to quantify UV exposure appropriately. Different methods have been employed to infer the general shape of the BWF for photoinhibition in natural phytoplankton, and recently, detailed BWFs have been determined for phytoplankton cultures and natural samples. Results show that although UVB photons are more damaging than UVA (320–400 nm), the greater fluxes of UVA in the ocean cause more UV inhibition. Models can be used to analyze the sensitivity of water column productivity to UVB and ozone depletion. Assumptions about linearity and time-dependence strongly influence the extrapolation of results. Laboratory measurements suggest that UV inhibition can reach a steady-state consistent with a balance between damage and recovery processes, leading to a non-linear relationship between weighted fluence rate and inhibition. More testing for natural phytoplankton is required, however. The relationship between photoinhibition of photosynthesis and decreases in growth rate is poorly understood, so long-term effects of ozone depletion are hard to predict. However, the wide variety of sensitivities between species suggests that some changes in species composition are likely. Predicted effects of ozone depletion on marine photosynthesis cannot be equated to changes in carbon flux between the atmosphere and ocean. Nonetheless, properly designed studies on the effects of UVB can help identify which physiological and ecological processes are most likely to dominate the responses of marine ecosystems to ozone depletion.Abbreviations BWF biological weighting function - BWF/P-I photosynthesis versus photosynthetically available irradiance as influenced by biologically-weighted UV - Chl chlorophyll a - DOM dissolved organic matter - E PAR irradiance in energy units (PAR) - E s saturation parameter for PAR in the BWF/P-I model - E inh * biologically-weighted dimensionless fluence rate for photoinhibition of photosynthesis by UV and PAR - biological weighting coefficient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae% baaaa!37AC!\[\bar \varepsilon \]PAR biological weighting coefficient for damage to photosynthesis by E PAR - k() diffuse attenuation coefficient for wavelength - MAAs mycosporine-like amino acids - PAR photosynthetically available radiation - P B rate of photosynthesis normalized to Chl - P s B maximum attainable rate of photosynthesis in the absence of photoinhibition - UVA ultraviolet A (320–400 nm) - UVB ultraviolet B (280–320 nm)  相似文献   

20.
The zooxanthellate octocoral Sinularia flexibilis is a producer of potential pharmaceutically important metabolites such as antimicrobial and cytotoxic substances. Controlled rearing of the coral, as an alternative for commercial exploitation of these compounds, requires the study of species-specific growth requirements. In this study, phototrophic vs. heterotrophic daily energy demands of S. flexibilis was investigated through light and Artemia feeding trials in the laboratory. Rate of photosynthetic oxygen by zooxanthellae in light (≈200 μmol quanta m−2 s−1) was measured for the coral colonies with and without feeding on Artemia nauplii. Respiratory oxygen was measured in the dark, again with and without Artemia nauplii. Photosynthesis–irradiance curve at light intensities of 0, 50, 100, 200, and 400 μmol quanta m−2 s−1 showed an increase in photosynthetic oxygen production up to a light intensity between 100 and 200 μmol quanta m−2 s−1. The photosynthesis to respiration ratio (P/R > 1) confirmed phototrophy of S. flexibilis. Both fed and non-fed colonies in the light showed high carbon contribution by zooxanthellae to animal (host) respiration values of 111–127%. Carbon energy equivalents allocated to the coral growth averaged 6–12% of total photosynthesis energy (mg C g 1 buoyant weight day 1) and about 0.02% of the total daily radiant energy. “Light utilization efficiency (ε)” estimated an average ε value of 75% 12 h 1 for coral practical energetics. This study shows that besides a fundamental role of phototrophy vs. heterotrophy in daily energy budget of S. flexibilis, an efficient fraction of irradiance is converted to useable energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号