首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
To reveal the functional role of Glu87 and Trp89 in the lid ofHumicola lanuginosa lipase, site-directed mutagenesis at Glu87 and Trp89 was carried out. The catalytic performance of wild-type and mutated lipases was studied in transesterification reactions in cyclohexane at a controlled water activity. Two different acyl donors were used in the investigation: tributyrin, a natural substrate for a lipase, and vinyl butyrate, an activated ester suitable for fast and efficient lipase-catalyzed transformations in preparative organic synthesis. As acyl acceptor 1-heptanol was used. The Glu87Ala mutation decreased theV max,app value with tributyrin and vinyl butyrate by a factor of 1.5 and 2, respectively. TheK m,app for tributyrin was not affected by the Glu87Ala mutation, but theK m,app for vinyl butyrate increased twofold compared to the wild-type lipase. Changing Trp89 into a Phe residue afforded an enzyme with a 2.7- and 2-fold decreasedV max,app with the substrates tributyrin and vinyl butyrate, respectively, compared to the wild-type lipase. No significant effects on theK m,app values for tributyrin or vinyl butyrate were seen as a result of the Trp89Phe mutation. However, the introduction of a Glu residue at position 89 in the lid increased theK m,app for tributyrin and vinyl butyrate by a factor of >5 and 2, respectively. The Trp89Glu mutated lipase could not be saturated with tributyrin within the experimental conditions (0–680 mM) studied here. With vinyl butyrate as a substrate theV max,app was only 6% of that obtained with wild-type enzyme.  相似文献   

2.
Summary The Vmax and KM of various forms of lipase from Pseudomonas cepacia (powder, adsorbed onto Celite or covalently linked to polyethylene glycol) were determined in organic solvents preequilibrated to water activities (a w) from <0.1 to 0.84. The model reaction was the transesterification between n-octanol and vinyl butyrate. It was found that KM for the nucleophile increased with increasing a w for all three lipase forms. Vmax increased with increasing a w for polyethylene glycol-lipase, whereas there was an optimum at intermediate a w values (0.11 – 0.38) for lipase powder and Celite-immobilized lipase.  相似文献   

3.
Chromobacterium viscosum lipase, solubilized in microemulsion droplets of glycerol containing small amounts of water and stabilized by a surfactant, could catalyze the glycerolysis of triolein. Kinetic analysis of the lipase-catalyzed reaction was possible in the reversed micellar system. Among surfactants and organic solvents tested, bis(2-ethylhexyl)sodiumsulfosuccinate (AOT) and isooctane were respectively most effective, for the glycerolysis of triolein in reversed micelles. Temperature effects, pH profile, Km,app, and Vmax,app were determined. Among various chemical compounds, Fe3+, Cu2+, and Hg2+ inhibited the lipase-catalyzed glycerolysis severely. However, the glycerolysis activity was partially restorable by adding histidine or glycine to the system containing these metal ions. The glycerolysis activity was dependent on water content and maximum activity was obtained at an R value of 1.21. Higher stability of the lipase was obtained in the reversed micellar system.  相似文献   

4.
The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K m and V max, were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K m values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V max,app>V max). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.  相似文献   

5.
Penaeus vannamei lipase was purified from midgut gland of whiteleg shrimp. Pure lipase (E.C. 3.1.1.3) was obtained after Superdex 200 gel filtration and Resource Q anionic exchange. The pure lipase, which is a glycosylated molecule, is a monomer having a molecular mass of about 44.8 kDa, as determined by SDS-PAGE analysis. The lipase hydrolyses short and long-chain triacylglycerols and naphthol derivates at comparable rates. A specific activity of 1787 U mg−1 and 475 U mg−1 was measured with triolein and tributyrin as substrates, respectively, at pH 8.0 and 30°C in the absence of colipase. The lipase showed a K m, app of 3.22 mM and k cat, app/K m, app of 0.303 × 103 mM−1 s−1 using triolein as substrate. Natural detergents, such as sodium deoxycholate, act as potent inhibitors of the lipase. This inhibition can be reversed by adding fresh oil emulsion. Result with tetrahydrolipstatin, an irreversible inhibitor, suggests that the lipase is a serine enzyme. Peptide sequences of the lipase were determined and compared with the full-length sequence of lipase which was obtained by the rapid amplification of cDNA ends method. The full cDNA of the pvl was 1,186 bp, with a deduced protein of 362 amino acids that includes a consensus sequence (GXSXG) of the lipase superfamily of α/β-hydrolase. The gene exhibits features of conserved catalytic residues and high homology with various mammalian and insect lipase genes. A potential lid sequence is suggested for pvl.  相似文献   

6.

In the present work, we have investigated biochemical thermo-kinetic stability of lipases immobilized on a biocompatible polymeric material. Immobilization of lipase Candida rugosa (CRL) was carried out on biocompatible blend of poly vinyl alcohol (PVA) and chitosan (CHY) support via entrapment and glutardehyde (Glu) cross-linking method to produce PVA:CHY:CRL and PVA:CHY:Glu:CRL as robust biocatalyst. These immobilized lipases were characterized by various physico-biochemical characterization techniques. Later on, thermal and solvent stability of polymer immobilized lipase was determined in term of half-life time (t 0.5), D values, enthalpy (ΔH°), entropy (ΔS°), and free energy (ΔG°) of deactivation at different temperatures and in various solvents. The thermodynamic deactivation stability trend was found as: cross-linked lipase CRL > entrapped lipase CRL > free lipase CRL. Moreover, kinetic parameters, such as K m, V max, and catalytic efficiency, were also determined to understand the kinetic features. The polymer immobilized enzyme was reused to investigate the economic viability of the developed biocatalyst.

  相似文献   

7.
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.  相似文献   

8.
d-Amino acid oxidase is a FAD-dependent enzyme that catalyses the conversion of the d-enantiomer of amino acids into the corresponding α-keto acid. Substrate specificity of the enzyme from the yeast Rhodotorula gracilis was investigated towards aromatic amino acids, and particularly synthetic α-amino acids.A significant improvement of the activity (Vmax,app) and of the specificity constant (the Vmax,app/Km,app ratio) on a number of the substrates tested was obtained using a single-point mutant enzyme designed by a rational approach. With R. gracilis d-amino acid oxidase the complete resolution of d,l-homo-phenylalanine was obtained with the aim to produce the corresponding pure l-isomer and to use the corresponding α-keto acid as a precursor of the amino acid in the l-form.  相似文献   

9.
Prephenate dehydratase is a key regulatory enzyme in the phenylalanine-specific pathway of Corynebacterium glutamicum. PCR-based random mutagenesis and functional complementation were used to screen for m-fluorophenylalanine (mFP)-resistant mutants. Comparison of the amino acid sequence of the mutant prephenate dehydratases indicated that Ser-99 plays a role in the feedback regulation of the enzyme. When Ser-99 of the wild-type enzyme was replaced by Met, the specific activity of the mutant enzyme was 30% lower than that of the wild-type. The Ser99Met mutant was active in the presence of 50 M phenylalanine, whereas the wild-type enzyme was not. The functional roles of the eight conserved residues of prephenate dehydratase were investigated by site-directed mutagenesis. Glu64Asp substitution reduced enzyme activity by 15%, with a 4.5- and 1.7-fold increase in K m and k cat values, respectively. Replacement of Thr-183 by either Ala or Tyr resulted in a complete loss of enzyme activity. Substitution of Arg-184 with Leu resulted in a 50% decrease of enzyme activity. The specific activity for Phe185Tyr was more than 96% lower than that of the wild-type, and the K m value was 26-fold higher. Alterations in the conserved Asp-76, Glu-89, His-115, and Arg-236 residues did not cause a significant change in the K m and k cat values. These results indicated that Glu-64, Thr-183, Arg-184, and Phe-185 residues might be involved in substrate binding and/or catalytic activity.  相似文献   

10.
(S)-1-Phenylethanol derivatives, which are the precursors of many pharmacological products, have also been used as anti-Alzheimer drugs. Bioreduction experiments were performed in a batch and packed-bed bioreactor. Then, the kinetics constants were determined by examining the reaction kinetics in the batch system with free and immobilized carrot cells. Also, the effective diffusion coefficient (De) of acetophenone in calcium alginate-immobilized carrot cells was investigated. Kinetics constants for free cells, which are intrinsic values, are reaction rate Vmax?=?0.052?mmol?L?1?min?1, and constants of the Michaelis–Menten KM?=?2.31?mmol?L?1. Kinetics constants for immobilized cells, which are considered apparent values, are Vmax, app?=?0.0407?mmol?L?1 min?1, KM, app?=?3.0472?mmol?L?1 for 2?mm bead diameter, and Vmax, app?=?0.0453?mmol?L?1 min?1, KM, app?=?4.9383?mmol?L?1 for 3?mm bead diameter. Average value of effective diffusion coefficient of acetophenone in immobilized beads was determined as 1.97?×?10?6?cm2?s?1. Using immobilized carrot cells in an up-flow packed-bed reactor, continuous production of (S)-1-phenylethanol through asymmetric bioreduction of acetophenone was performed. The effects of the residence time and concentrations of substrate were investigated at pH 7.6 and 33°C. Enantiomerically pure (S)-1-phenylethanol (ee?>?99%) was produced with 75% conversion at 4-hr residence time.  相似文献   

11.
The β2-receptor agonist class of drugs is metabolized in humans almost exclusively by sulfate conjugation. The objective of this investigation was to determine the influence of chemical structure on the stereoselectivity of the sulfoconjugation of these chiral drugs. The pure enantiomers of six β2-agonists, including those clinically most widely used, were all effectively sulfated both by the cytosol of the human intestine and the recombinant human M-form phenolsulfotransferase (PST). Whereas the apparent Km values (Km,app) for the sulfation of the individual drug enantiomers by the intestinal cytosol varied widely, ranging from 4.8 μM for (S)-isoproterenol to 889 μM for (S)-albuterol, these Km,app values were highly correlated with those obtained with M-PST (correlation coefficient 0.994). In contrast, the M-PST Vmax,app values were similar for all drug enantiomers, ranging from 276 to 914 pmol min−1 mg−1 protein, implying that substrate binding to M-PST by far is the main determinant of the sulfation activity. For isoproterenol, the Km,app for M-PST was 6.1 times higher for the active (R)- than for the inactive (S)-enantiomer. For other β2-agonists, the stereoselectivity decreased towards unity as the Km,app increased. However, for albuterol, containing a hydroxymethyl substituent at the aromatic ring, the stereoselectivity was dramatically reversed, with 10 times higher Km,app for the inactive (S)- than for the active (R)-enantiomer. Chirality 10:800–803, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
The homologous lipases fromRhizomucor miehei andHumicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed theS-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei:E S =8.5;H. lanuginosa:E S =10.5), but theR-enantiomer of phenyl 2-methyldecanoate (E R =2.9). Chemical arginine specific modification of theR. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (E R =2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (E S =2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (E S =1.9) and increased the enantioselectivity with the aromatic ester (E R =4.4) as substrates. The mutation, Glu 87 Ala, in the lid of theH. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (E S =17.4) and a decreased enantioselectivity with the phenyl ester (E R =2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.  相似文献   

13.
-Linked disaccharides (laminaribiose and cellobiose) stimulated(1–3)glucan synthase activity ofNeurospora crassa by reducing the Km app for the substrate while not changing the Vmax. Laminaribiose and cellobiose werelinear activators with a Ka app of 0.32 mM and Ka app of 1.7 mM, respectively. Laminaribiose was not found to be incorporated into product, i.e., did not act as a primer covalently bound to product.  相似文献   

14.
Kinetic analysis of the reduction of Cr(VI) by resting cell suspensions of Desulfovibrio vulgaris ATCC 29579 and a new isolate, Desulfovibrio sp. (`Oz7') was studied using lactate as the electron donor at 30 °C. The apparent K m (K m app) and V max with respect to Cr(VI) reduction was compared for both strains. Desulfovibio sp. `Oz7' had a K m app of 90 M (threefold lower than that of D. vulgaris ATCC 29579) and a V max of 120 nmol h–1 mg–1 biomass dry wt (approx. 30% lower than for the reference strain). The potential of the new isolate for bioremediation of Cr(VI) wastewaters is discussed.  相似文献   

15.
Among 97 fungal strains isolated from soil collected in the arctic tundra (Spitsbergen), Penicillium chrysogenum 9 was found to be the best lipase producer. The maximum lipase activity was 68 units mL–1 culture medium on the fifth day of incubation at pH 6.0 and 20°C. Therefore, P. chrysogenum 9 was classified as a psychrotrophic microorganism. The non-specific extracellular lipase showed a maximum activity at 30°C and pH 5.0 for natural oils or at pH 7.0 for synthetic substrates. Tributyrin was found to be the best substrate for lipase, among those tested. The Km and Vmax were calculated to be 2.33 mM and 22.1 units mL–1, respectively, with tributyrin as substrate. The enzyme was inhibited more by EDTA than by phenylmethylsulfonyl fluoride and was reactivated by Ca2+. The P. chrysogenum 9 lipase was very stable in the presence of hexane and 1,4-dioxane at a concentration of 50%, whereas it was unstable in presence of xylene.  相似文献   

16.
The influences of nonuniform activity distribution within a porous solid support on the apparent kinetic parameters, Vmapp and Kmapp, of immobilized enzyme reactions following the Michaelis-Menten kinetics were theoretically investigated. As the enzyme is distributed to the neighborhood of the external surface of the support, Vmapp and Kmapp approach their respective intrinsic values over a wide range of substrate concentration. There is a close relationship between the nonuniform distribution and internal diffusional resistance. Changes in these two factors provide similar effects on Vmapp and Kmapp. As long as the immobilized enzyme reaction follows Michaelis-Menten kinetics, the nonuniform activity distribution never makes Kmapp less than its intrinsic value.  相似文献   

17.
Diffusional and electrostatic effects on the apparent maximum reaction rate Vmapp and the apparent Michaelis constant Kmapp were investigated theoretically for a system in which an enzyme immobilized on the external surface of a solid support catalyzes a reaction according to Michaelis-Menten kinetics. In such a system, the dependence of Vmapp and Kmapp on the substrate concentration can be expressed analytically. When the support and substrate carry charges of the same sign, resulting in a repulsive force between them, both Vmapp and Kmapp decrease with increasing substrate concentration, but they never decrease below the respective intrinsic values. On the other hand, when the support and substrate carry charges of opposite sign and therefore an attractive force occurs, Vmapp decreases towards its intrinsic value, while Kmapp decreases to values below its intrinsic value in the region of high substrate concentration.  相似文献   

18.
The activating or inhibiting actions of a variety of anion species and of oligomycin, aurovertin and Dio-9 on the ATPase of a sonic particle preparation of rat liver mitochondria have been characterized by measurements of the relevantV max,K i andK m values.The normalV max was increased by a factor near 7 by the anions: dichromate, chromate, pyrophosphate, orthophosphate, orthoarsenate and sulphate. The fully activating concentration varied from about 2 mM for dichromate to 150 mM for sulphate. The increase inV max was accompanied by a time-dependent decrease in (K i)ADP, but there was no change in (K m)ATP. The increase inV max by the activating anions was abolished by aurovertin; but in presence of oligomycin, the lowV max was increased by the activating anions by the same factor as theV max in absence of oligomycin.Certain anions, notably azide, decreasedV max, but did not affect (K i)ADP or (K m)ATP. The decrease inV max by azide and oligomycin were approximately additive. Even at high concentration, Dio-9 was without detectable effect on the ATPase, but it had a gramicidinlike effect on the intact mitochondria.The specificity of the ATPase for ATP relative to GTP was found to be attributable to the high value of (V max)ATP compared with (V max)GTP. The values of (K m)ATP and (K m)GTP were virtually the same.Some rationalization of these and other supporting observations is attempted in terms of present knowledge of the constitution of the ATPase complex.  相似文献   

19.
Enzyme engineering via immobilization techniques is perfectly compatible against the other chemical or biological approximate to improve enzyme functions and stability. In this study lactoperoxidase was immobilized onto polyaniline polymer activated with glutaraldehyde as a bifunctional agent, to improve enzyme properties. Polyaniline polymer was used due its unique physical and chemical properties to immobilize lactoperoxidase (LPO). The optimum activity of immobilized LPO was observed at pH 6 and 55?°C, which has been increased about 10?°C for the immobilized enzyme. The immobilized enzyme maintained absolutely active for 60?days whereas the native enzyme lost 80?% of its initial activity within this period of time. Moreover, the immobilized enzyme can be reused for several times without loss of activity. The kinetic parameter studies showed slight differences between free and immobilized enzymes. The Km and Km.app were calculated to be 0.6 and 0.4; also Vmax and Vmax.app were 1.3 and 0.9 respectively.  相似文献   

20.
Amino acid residues in the active site of quinoline 2-oxidoreductase (Qor) that are deemed important for substrate binding and turnover were replaced by site-directed mutagenesis. The apparent kcat values for quinoline were reduced 2.4-, 38-, 40-, and 199-fold in the protein variants QorA259G, QorW331G, QorV373A, and QorA546G, respectively. The substitution A259G did not significantly alter Km app. Despite the presumed crucial role of W331 and V373 in substrate positioning, the replacements W331G (Km app: 0.33 mM) and V373A (Km app: 0.41 mM) only slightly affected affinity for quinoline (Km app of Qor: 0.12 mM). QorA546G showed an increased affinity for quinoline and quinoxaline, as suggested by its 4.3- and 7.5-fold decrease in Km app (quinoline) and Km app (quinoxaline), respectively, compared with Qor. The relative activities of the protein variants towards substituted quinolines differed from those of Qor. QorW331G, for example, may be suitable for hydroxylation of quinoxaline and C4-substituted quinolines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号