首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of porcine endothelial-cell-conditioned medium on proteoglycan synthesis by pig aorta smooth muscle cells was studied under serum-free conditions. Maximal stimulation of [35S]-sulfate incorporation (50%) into medium-secreted and cell layer proteoglycans was observed after 20 min and 4 h incubation, respectively. This stimulation can be explained neither by increased secretion nor by oversulfation of medium-secreted [35S]-labeled proteoglycans. Those [35S]-proteoglycans secreted (for 24 h) in the presence of endothelial cell-conditioned medium were characterized by a higher hydrodynamic size than those secreted in the presence of control medium, without modification of glycosaminoglycan chain length. Agreement between the stimulation of incorporation of [35S]-sulfate into glycanic chains (50.1%) and [14C]-serine residues associated with glycosaminoglycans (49.9%) involved an increase in the number of glycanic chains linked to protein cores. The lesser stimulation of [14C]-serine incorporation into secreted proteins (18%) suggested that stimulation of glycosaminoglycan synthesis was not the direct consequence of enhanced protein synthesis. Proteoglycan synthesis was studied in the presence of para-nitrophenyl-beta-D-xyloside. Fractionation of medium-secreted [35S]-proteoglycans and xyloside-initiated glycosaminoglycans revealed that stimulation of [35S]-glycosaminoglycan protein core acceptor for glycanic chain initiation. Our results suggest that the factor(s) secreted by endothelial cells are able to modify smooth muscle cell proteoglycan synthesis by stimulating the first step of protein core glycosylation. This stimulation was accompanied by an increase in proteoglycan hydrodynamic size.  相似文献   

2.
Confluent adult and fetal human glomerular epithelial cells were incubated for 24 h in the presence of [3H]-amino acids and [35S]sulfate. Two heparan-35SO4 proteoglycans were released into the culture medium. These 35S-labeled proteoglycans eluted as a single peak from anion exchange chromatographic columns, but were separable by gel filtration on Sepharose CL-6B columns. The larger heparan-35SO4 proteoglycan eluted with the column void volume and at a Kav of 0.26 from Sepharose CL-4B columns. The most abundant medium heparan-35SO4 proteoglycan was a high buoyant density proteoglycan similar in hydrodynamic size (Sepharose CL-6B Kav 0.23) to those previously described in glomerular basement membranes and isolated glomeruli. Heparan-35SO4 chains from both proteoglycans were 36 kDa. A smaller proportion of Sepharose CL-6B excluded dermatan-35SO4 proteoglycan was also synthesized by these cells. The predominant protein cores of both medium heparan-35SO4 proteoglycans were approximately 230 and 180 kDa. A hybrid chondroitin/dermatan-heparan-35SO4 proteoglycan with an 80-kDa protein core copurified with the smaller medium heparan-35SO4 proteoglycan. This 35S-labeled proteoglycan appeared as a diffuse, chondroitinase ABC sensitive 155-kDa fluorographic band in sodium dodecyl sulfate-polyacrylamide gels after the Sepharose CL-6B Kav 0.23 35S-labeled proteoglycan fraction was digested with heparitinase. The heparitinase generated heparan sulfate proteoglycan protein cores and the 155-kDa hybrid proteoglycan fragment had molecular weights similar to those previously identified in rat glomerular basement membrane and glomeruli using antibodies against a basement membrane tumor proteoglycan precursor (Klein et al. J. Cell Biol. 106, 963-970, 1988). Thus, human glomerular epithelial cells in culture are capable of synthesizing, processing, and releasing heparan sulfate proteoglycans which are similar to those synthesized in vivo and found in the glomerular basement membrane. These proteoglycans may belong to a family of related basement membrane proteoglycans.  相似文献   

3.
Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated [35S]sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (i) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (ii) link-stable proteoglycan aggregates are assembled, (ii) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (iv) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.  相似文献   

4.
5.
Sepharose CL-6B column chromatography of crude extracts from the slices of regenerating rat livers after partial hepatectomy and sham-operated controls labeled with [35S]sulfuric acid revealed an enhancement of [35S]sulfate incorporation into proteoglycan fractions during regeneration. The 35S-labeled proteoglycans contained heparan sulfate (more than 80% of the total) and chondroitin/dermatan sulfate. The 35S-incorporation into both glycosaminoglycans increased to maxima 3-5 days after partial hepatectomy and decreased thereafter toward the respective control levels. When [35S]sulfuric acid was replaced by [3H]glucosamine, similar results were obtained. These results suggest that the maximal stimulation of proteoglycan synthesis in regenerating rat liver follows the maximal mitosis of hepatic cells 1-2 days after partial hepatectomy. The 35S-labeled proteoglycans from regenerating liver 3 days after partial hepatectomy and control were analyzed further. They were similar in chromatographic behavior on a gel filtration or an anion-exchange column and in glycosaminoglycan composition. Their glycosaminoglycans were indistinguishable in electrophoretic mobility. However, these proteoglycans were slightly but significantly different in their affinity to octyl-Sepharose and in the molecular-weight distribution of their glycosaminoglycans.  相似文献   

6.
When slices of adult rabbit articular cartilage were incubated in culture medium, the rate of incorporation of [35S]sulphate or [3H]acetate into glycosaminoglycans increased 4-8 fold during the first 5 days of incubation. Similar changes in biosynthetic activity were observed during culture of adult bovine cartilage. The activation of synthesis was not serum-dependent, but appeared to be a result of the depletion of tissue proteoglycan that occurs under these incubation conditions [Sandy, Brown & Lowther (1978) Biochim. Biophys. Acta 543, 536--544]. Thus, although complete activation was observed in serum-free medium, it was not observed if the cartilage was cultured inside dialysis tubing or in medium containing added proteoglycan subunit. The average molecular size of the proteoglycans synthesized by activated tissue was slightly larger than normal, as determined by chromatography on Sepharose CL-2B, and the average molecular size of the glycosaminoglycans synthesized by activated tissue was markedly increased over the normal. The increase in chain size was accompanied by an increase in the proportion of the chains degraded by chondroitinase ABC; these results are consistent with the preferential synthesis by activated chondrocytes of chondroitin sulphate-rich proteoglycans. The increase in glycosaminoglycan chain size was observed whether the chains were formed on endogenous core protein or on exogenous benzyl-beta-D-zyloside. An approximate 4-fold activation in culture of glycosaminoglycan synthesis on protein core was accompanied by a 1.54-fold increase in the rate of incorporation of [3H]serine into the chondroitin sulphate-linkage region of the proteoglycans. A 2.8-fold activation in culture of glycosaminoglycan synthesis on benzyl-beta-D-zyloside was accompanied by a 1.7-fold increase in the rate of incorporation of [3H]benzyl-beta-D-zyloside into glycosaminoglycans. The activation of glycosaminoglycan synthesis was, however, accompanied by no detectable change in the activity of xylosyltransferase (EC 2.4.2.26) in cell-free extracts. These results are discussed in relation to current ideas on the control of proteoglycan synthesis in cartilage.  相似文献   

7.
8.
Proteoglycans synthesized by cultured mouse osteoblasts   总被引:1,自引:0,他引:1  
Proteoglycan synthesis in nonmineralizing osteoblast cultures was investigated. Cultures were labeled with [35S]sulfate or [3H]serine, and proteoglycans were extracted from medium and cell layer with 4 M guanidine HCl. Labeled material was subjected to Sepharose CL-4B and DEAE-Sephacel chromatography and polyacrylamide gel electrophoresis. The size and composition of the glycosaminoglycan chains and the protein core size were determined. Two proteoglycan populations were isolated by Sepharose CL-4B chromatography: a minor excluded species with chondroitin sulfate chains of apparent Mr 25,000 and a smaller population (Kav = 0.43) accounting for 80% of the total labeled material. This small population resolved into two species by polyacrylamide gel electrophoresis. Both species contain dermatan sulfate chains of apparent Mr 40,000 and a core protein with Mr 45,000 on sodium dodecyl sulfate gels. With the exception of their glycosaminoglycan composition these species appear similar to those extracted from bone. In addition, high molecular weight hyaluronic acid and glycosaminoglycan peptides were found in cell extracts.  相似文献   

9.
The effects of mild or severe trypsin treatment of bovine articular-cartilage slices in tissue culture were studied by monitoring the incorporation of [35S]sulphate into proteoglycans. Moderate trypsin treatment caused a subsequent marked inhibition of proteoglycan biosynthesis, which was reversible with time. Analysis on Sepharose CL-2B of the proteoglycan species synthesized showed that, directly after trypsin treatment, there was a 30% increase in the synthesis of the low-Mr proteoglycan (Kav. 0.71), and the total decrease in proteoglycan biosynthesis was reflected in a decrease in the synthesis of the high-Mr proteoglycan species (Kav. 0.31). The small proteoglycan was partially characterized and shown to be a true biosynthetic product and not a breakdown product. Trypsin treatment (20 micrograms/ml per 100 mg of tissue) of cartilage slices also resulted in an increase in the glycosaminoglycan chain size of the large proteoglycan, but not of the small proteoglycan.  相似文献   

10.
Confluent cultured human lung fibroblasts were labeled with 35SO4(2-). After 48 h of labeling, the pericellular matrix was prepared by Triton X-100 and deoxycholate extraction of the monolayers. Heparan sulfate proteoglycan (HSPG) accounted for nearly 80% of the total matrix [35S]proteoglycans. After solubilization in 6 M guanidinium HCl and cesium chloride density gradient centrifugation, the majority (78%) of these [35S] HSPG equilibrated at an average buoyant density of 1.35 g/ml. This major HSPG fraction was purified by ion-exchange chromatography on Mono Q and by gel filtration on Sepharose CL-4B, and further characterized by gel electrophoresis and immunoblotting. Intact [35S]HSPG eluted with Kav 0.1 from Sepharose CL-4B, whereas the protein-free [35S]heparan sulfate chains, obtained by alkaline borohydride treatment of the proteoglycan fractions, eluted with Kav 0.45 (Mr approximately 72,000). When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, core (protein) preparations, obtained by heparitinase digestion of 125I-labeled HSPG fractions, yielded one major labeled band with apparent molecular mass of approximately 300 kDa. Reduction with beta-mercaptoethanol slightly increased the apparent Mr of the labeled band, suggesting a single polypeptide structure and the presence of intrachain disulfide bonds. Immunoadsorption experiments and immunostaining of electrophoretically separated heparitinase-digested core proteins with monoclonal antibodies raised against matrix and cell surface-associated HSPG suggested that the major matrix-associated HSPG of cultured human lung fibroblasts is distinct from the HSPG that are anchored in the membranes of these cells. Binding studies suggested that this matrix HSPG interacts with several matrix components, both through its glycosaminoglycan chains and through its heparitinase-resistant core. Core (protein) interactions seem to be responsible for the association of the proteoglycan with the extracellular matrix.  相似文献   

11.
1. The structure of chondroitin/dermatan and heparan-sulphate chains from various proteoglycan populations derived from cultured human skin fibroblasts have been examined. Confluent cell cultures were biosynthetically labelled with [3H]-glucosamine and 35SO4(2-), and proteoglycans were purified according to buoyant density, size and charge density [Schmidtchen, A., Carlstedt, I., Malmstr?m, A. & Fransson, L.-A. (1990) Biochem. J. 265, 289-300]. Some proteoglycan fractions were further fractionated according to hydrophobicity on octyl-Sepharose in Triton X-100 gradients. The glycosaminoglycan chains, intact or degraded by chemical or enzymic methods were then analysed by gel chromatography on Sepharose CL-6B, Bio-Gel P-6, ion exchange HPLC and gel electrophoresis. 2. Three types of dermatan-sulphate chains were identified on the basis of disaccharide composition and chain length. They were derived from the large proteoglycan, two small proteoglycans and a cell-associated proteoglycan with core proteins of 90 kDa and 45 kDa. Intracellular, free dermatan-sulphate chains were very similar to those of the small proteoglycans. 3. Heparan-sulphate chains from different proteoglycans had, in spite of small but distinct differences in size, strikingly similar compositional features. They contained similar amounts of D-glucuronate, L-iduronate (with or without sulphate) and N-sulphate groups. They all displayed heparin-lyase-resistant domains with average molecular mass of 10-15 kDa. The heparan-sulphate chains from proteoglycans with 250-kDa and 350-kDa cores were the largest greater than 50 kDa), containing an average of four or five domains, in contrast to heparan-sulphate chains from the small heparan-sulphate proteoglycans which had average molecular mass of 45 kDa and consisted of three or four such domains. Free, cell-associated heparan-sulphate chains were heterogeneous in size (5-45 kDa). 4. These results suggest that the core protein may have important regulatory functions with regard to dermatan-sulphate synthesis. On the other hand, synthesis of heparan sulphate may be largely controlled by the cell that expresses a particular proteoglycan core protein.  相似文献   

12.
A short-term incubation system was used to study proteoglycan synthesis during the early stages of medullary bone formation in estrogen-treated male Japanese quail. The proteoglycans were separated by chromatography on a DEAE Bio-Gel A column eluted with a 400-ml 0-1 M NaCl gradient. The profile from uninjected control birds showed a single peak, whereas profiles from estrogen-treated birds showed development of another peak. Incorporation of [35S]sulfate into the estrogen-induced proteoglycan increased most dramatically between 25 and 37 h after hormone treatment. The estrogen-induced proteoglycan has a Kav = 0.65 on Sepharose CL-4B, an average buoyant density of 1.50 g/ml, and contains keratan sulfate as its constituent glycosaminoglycan. The second proteoglycan has a Kav = 0.52 on Sepharose CL-4B, an average buoyant density of greater than or equal to 1.7 g/ml, and has chondroitin sulfate as it major glycosaminoglycan. It may also contain some heparin or heparan sulfate. The results support the usefulness of the incubation system for studying the dynamics of bone matrix production.  相似文献   

13.
The effects of tunicamycin, an inhibitor of N-linked oligosaccharide biosynthesis, on the synthesis and turnover of proteoglycans were investigated in rat ovarian granulosa cell cultures. The synthesis of proteoglycans was inhibited (40% of the control at 1.6 micrograms/ml tunicamycin) disproportionately to that of general protein synthesis measured by [3H]serine incorporation (80% of control). Proteoglycans synthesized in the presence of tunicamycin lacked N-linked oligosaccharides but contained apparently normal O-linked oligosaccharides. The dermatan sulfate and heparan sulfate chains of the proteoglycans had the same hydrodynamic size as control when analyzed by Sepharose 6B chromatography. However, the disulfated disaccharide content of the dermatan sulfate chains was reduced by tunicamycin in a dose-dependent manner, implying that the N-linked oligosaccharides may be involved in the function of a sulfotransferase which is responsible for sulfation of the iduronic acid residues. When [35S]sulfate and [3H]glucosamine were used as labeling precursors, the ratio of 35S/3H in chondroitin 4-sulfate was reduced to approximately 50% of the control by tunicamycin, indicating that the drug reduced the supply of endogenous sugar to the UDP-N-acetylhexosamine pool. Neither transport of proteoglycans from Golgi to the cell surface nor their turnover from the cell surface (release into the medium, or internalization and subsequent intracellular degradation) was affected by the drug. Addition of mannose 6-phosphate to the culture medium did not alter the proteoglycan turnover. When granulosa cells were treated with cycloheximide, completion of proteoglycan diminished with a t1/2 of approximately 12 min, indicating the time required for depleting the core protein precursor pool. The glycosaminoglycan synthesizing capacity measured by the addition of p-nitrophenyl-beta-xyloside, however, lasted longer (t1/2 of approximately 40 min). Tunicamycin decreased the core protein precursor pool size in parallel to decreased proteoglycan synthesis, both of which were significantly greater than the inhibition of general protein synthesis. This suggests two possibilities: tunicamycin specifically inhibited the synthesis of proteoglycan core protein, or more likely a proportion of the synthesized core protein precursor (approximately 50%) did not become accessible for post-translational modifications, and was possibly routed for premature degradation.  相似文献   

14.
Heterogeneity of heparan sulfate proteoglycans synthesized by PYS-2 cells   总被引:5,自引:0,他引:5  
Antibodies to the basement membrane proteoglycan produced by the EHS tumor were used to immunoprecipitate [35S]sulfate-labeled protoglycans produced by PYS-2 cells. The immunoprecipitated proteoglycans were subsequently fractionated by CsCl density gradient centrifugation and Sepharose CL-4B chromatography. The culture medium contained a low-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.18, containing heparan sulfate side chains of Mr = 35-40,000. The medium also contained a high-density proteoglycan eluting from Sepharose CL-4B at Kav = 0.23, containing heparan sulfate side chains of Mr = 30,000. The corresponding proteoglycans of the cell layer were all smaller than those in the medium. Since the antibodies used to precipitate those proteoglycans were directed against the protein core, this suggests that these proteoglycans share common antigenic features, and may be derived from a common precursor which undergoes modification by the removal of protein segments and a portion of each heparan sulfate chain.  相似文献   

15.
The proteoglycans of the cynomolgus monkey corneal stroma were isolated and characterized by using a combination of physiochemical and biochemical methods. Proteoglycans were biosynthetically radiolabeled by incubating whole corneas in medium containing [35S]sulfate and either [3H]serine or [3H]mannose as precursors. Macromolecules were extracted from the corneal stromas with 4 m guanidine-HCl. After dialysis into 8 m urea, proteoglycans in the extracts were initially purified by DEAE-cellulose chromatography. A portion of the proteoglycan fraction was digested with chondroitinase ABC, and the keratan sulfate proteoglycans were then isolated by rechromatography of the digest on DEAE-cellulose. Another portion of the proteoglycan fraction was digested with endo-β-galactosidase and the dermatan sulfate-proteoglycans were then isolated by chromatography of the digest on Sepharose CL-4B. Each proteoglycan population was further fractionated by chromatography on concanavalin A-Sepharose and by CsCl density gradient centrifugation. Four subpopulations for both the keratan sulfate proteoglycans and the dermatan sulfate proteoglycans were isolated. Based on differences in binding to concanavalin A-Sepharose, buoyant densities, and glycosaminoglycan content, subpopulations of each proteoglycan differ by the number and properties of both the glycosaminoglycan chains and the mannose-containing oligosaccharides attached to their protein core.  相似文献   

16.
The properties of aortic proteoglycans synthesized in vitro were examined to demonstrate synthesis of intact proteoglycans by aortic tissue in culture and to compare labeling and synthetic rates of two different populations of proteoglycan. Following 3, 6, or 9 h of incubation in medium containing [35S]sodium sulfate and [3H]serine, the tissue was extracted with 4.0 M guanidine hydrochloride containing protease inhibitors. Extracts were chromatographed on Sepharose CL-4B and subjected to buoyant density centrifugation under dissociative conditions. Radioactive precursors were incorporated into two major populations of aortic proteoglycan, one of high molecular weight eluting near the void volume of Sepharose CL-4B (Protooglycan I) and one of lower molecular weight (Proteoglycan II) having a Kav of 0.40–0.44. The radioactively labeled proteoglycans were localized at densities 1.50–1.56 g/ml (Preparation 1) and 1.43–1.49 g/ml (Preparation 2) following CsCl buoyant density centrifugation. Both proteoglycan populations had increased incorporation of 35S and 3H over time. At all times the lower molecular weight proteoglycan had a higher specific activity (dpm 35S and 3H/μg hexuronic acid). At 3, 6, and 9 h, the specific activity of Proteoglycan II was 8.2-, 6.7- and 3.0-fold higher than Proteoglycan I using 35S and 13.0-, 8.1- and 2.7-fold higher using 3H, suggesting different synthetic rates for the two proteoglycans. The results illustrate synthesis of intact proteoglycans during short-term artery culture. The proteoglycan types have size and buoyant density characteristics as described for artery, but based upon changes in specific activity ratios, the two proteoglycan populations differ in rates of synthesis.  相似文献   

17.
Rat glomerular heparan sulfate (HS) and dermatan sulfate (DS) proteoglycan synthesis was studied in vitro and in vivo. Incorporation of [35S]sulfate into macromolecules was linear over 16 h in vitro, and DS was the predominant glycosaminoglycan (GAG), while HS dominated in vivo incubations. Proteoglycans were found in the bottom 2/5 (high density) CsCl gradient fractions and eluted as two overlapping peaks from DEAE-Sephacel columns. The proportion of low density 35S-glycoproteins and 35S-proteoglycans increased with time. Two high buoyant density HS proteoglycans were extracted from glomeruli and eluted in DEAE peak I. The first, HS-tIA, had an Mr of 130 X 10(3) with Mr 12.5 X 10(3) GAG chains. This proteoglycan was released from the tissue by trypsin and was partially displaced by heparin treatment. In addition, it was rapidly released into the medium of label-chase experiments after which it migrated slightly more rapidly than HS-tIA in gels, with HS chains similar in length to its tissue counterpart. The second, HS-tIB, had an Mr of 8.6 X 10(3) with little or no attached protein. This proteoglycan was characterized as intracellular as it resisted release by trypsin treatment or heparin extraction in medium and was not detected in the medium of label-chase experiments. Two tissue DS proteoglycans were characterized. The first, DS-tIA, co-purified with HS-tIA and was the predominant proteoglycan synthesized during 4-h in vitro incubations. Like HS-tIA, it was rapidly released into medium and displaced from cell surfaces or tissue "receptors" by heparin or trypsin treatments. A second, Sepharose CL-6B-excluded DS proteoglycan from DEAE peak II, DS-tII, accumulated in tissue over 16 h in vitro. This proteoglycan was self-associating and contained clusters of iduronic acid residues along its Mr 26 X 10(3) DS chains. It resisted extraction from the tissue with heparin, trypsin, and detergent. No DS-tII was detected in the incubation medium. Instead, medium proteoglycans eluted as single Sepharose CL-6B-included peaks. DS chains from medium proteoglycans were shorter (Mr 18 X 10(3)) and had more regularly spaced iduronic acid residues than GAGs from DS-tII. The length and sulfation patterns of DS-mII GAG were similar to GAG from DS-tIA. Thus, glomeruli rapidly synthesized and released Sepharose CL-6B-included heparin-displaceable DS and HS proteoglycans while retaining a Sepharose CL-6B-excluded self-associating DS proteoglycan and an intracellular HS.  相似文献   

18.
Proteoglycans synthesized by human glomerular mesangial cells in culture   总被引:1,自引:0,他引:1  
Human fetal kidney mesangial cells were cultured for 24 h in the presence of 3H-amino acids and [35S] sulfate and chased for 24 h in nonradioactive medium. Incubation medium and cell layer proteoglycans were purified twice by high performance liquid chromatography-DEAE chromatography followed by gel filtration chromatography. The major medium 35S-macromolecules were chondroitin/dermatan-35SO4 proteoglycans. A small, Sepharose CL-6B Kav 0.14 dermatan-35SO4 proteoglycan was detected in the labeling medium and was released into both the early (time 0-0.5 h) and late (6-24 h) chase media. It contained 38 kDa 4-sulfated 35S-GAGs with a high content of iduronic acid and a 45-kDa protein core. A protein core of similar molecular weight was detected in the culture medium by Western analysis using antibodies to biglycan or proteoglycan-I (Fisher, L. W., Termine, J. D., and Young, M. F. (1989) J. Biol. Chem. 264, 4571-4576). This 35S-proteoglycan was not detected in the cell layer. However, a small dermatan-35SO4 with little or no protein core was present in the intracellular compartment. A large, Sepharose CL-6B excluded chondroitin-35SO4 proteoglycan was released into the culture medium and was detected between 6 and 24 h in chase medium. It eluted near the void volume of both associative and dissociative Sepharose CL-4B columns. It contained 30-kDa 4- and 6-sulfated 35S-GAGs and a 253-kDa protein core. A chondroitin-35SO4 proteoglycan with similar sized 35S-GAGs was detected in both the detergent-soluble and insoluble cell layer compartments. A Sepharose CL-6B Kav 0.11 heparin-35SO4 proteoglycan with a 220-kDa protein core and 38-kDa 35S-GAGs was rapidly released from the cell layer. This proteoglycan was larger than that previously described in isolated rat glomeruli or glomerular basement membranes, but had a core protein similar in size to one previously detected in these tissues. A larger heparan-35SO4 proteoglycan with larger 35S-GAGs was present in the detergent-insoluble cell layer compartment. The proteoglycans released by glomerular mesangial cells in culture resembled those synthesized by aortic smooth muscle cells in culture or extracted from aorta, supporting the notion that these cells are of vascular origin.  相似文献   

19.
Pancreatic islet amyloid deposits in type 2 diabetes are associated with decreased islet beta-cell function. They contain both amylin (islet amyloid polypeptide), the beta-cell-derived unique fibrillogenic component, and heparan sulfate proteoglycans (HSPGs). We hypothesized that beta-cell HSPGs contribute to islet amyloidogenesis. [35S]Sulfate-labeled proteoglycans from islet-derived beta-TC3 cell cultures eluted from diethylaminoethyl Sephacel at 0.35M NaCl. Chromatography on Sepharose CL-4B and SDS-PAGE analysis revealed distinct populations of proteoglycans. Medium HSPGs eluted at K(av) approximately 0.18 and 0.50 with glycosaminoglycan chains of approximately 28 and 19 kDa, respectively. A third population containing chondroitin/dermatan sulfate eluted at K(av) approximately 0.70 with glycosaminoglycan chains of approximately 10 kDa. A single size class of heparan and chondroitin/dermatan sulfate proteoglycans in the cell layer eluted at K(av) approximately 0.40 with glycosaminoglycan chains of approximately 19 kDa. Medium and cell layer proteoglycans bound exclusively to fibrillogenic amylin, as determined by gel mobility shift assays, indicating a possible role for beta-cell-derived proteoglycans in islet amyloid formation.  相似文献   

20.
The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), an active form of vitamin D3, on the metabolism of proteoglycans by an osteoblastic cell line MC3T3-E1 were studied. Cells metabolically labeled with [35S]sulfate and/or [3H]glucosamine synthesized large and small dermatan sulfate proteoglycans and heparan sulfate proteoglycan. The incorporation of [35S]sulfate into proteoglycans for 1 h was reduced by 1,25-(OH)2D3 in a dose-dependent manner with a maximum reduction of 40% obtained at 10(-8)M 1,25-(OH)2D3. This effect was observed for all the proteoglycans with the decrease for the large dermatan sulfate proteoglycan most prominent. Treatment with 1,25-(OH)2D3 did not influence the degree of sulfation nor the molecular size of the glycosaminoglycan chains. Thus, the change in the incorporation of [35S] sulfate reflects net change in the synthesis of proteoglycans. When cells were treated with beta-D-xyloside, 1,25-(OH)2D3 also inhibited net synthesis of dermatan sulfate glycosaminoglycan chains on this exogenous substrate suggesting that it decreases the capacity of the cells for glycosaminoglycan synthesis. The incorporation of [3H]glucosamine into hyaluronic acid was also inhibited up to 70% by 10(-8) M 1,25-(OH)2D3. Treatment with 24,25-dihydroxyvitamin D3 did not cause significant changes in the proteoglycan synthesis. Degradation of proteoglycans associated with the cell layer was enhanced by treatment with 1,25-(OH)2D3 at 10(-8) M. Proteoglycans exogenously added to the culture were also degraded with a cell-mediated process which was stimulated by treatment with 10(-8) M 1,25-(OH)2D3. These results demonstrate that 1,25-(OH)2D3 reduces the synthesis and stimulates the degradation of proteoglycans in osteoblastic cells in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号