首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钟智  李宏 《生物物理学报》2008,24(5):379-392
以细菌和古菌基因组5′ UTR序列作为研究对象,分析在5′ UTR 的3个不同阅读框架中三联体AUG的分布,发现无论是细菌还是古菌基因组都在阅读框1中有非常明显的AUG缺失(depletion)。AUG的缺失表明在起始密码子上游的AUG很可能会对基因的翻译起始产生影响。分析得知:绝大部分的AUG都是以uORF(upstream open reading frame)的形式出现的,uAUG(upstream AUG)的数量很少,特别是在阅读框1中,而且在细菌基因组的阅读框1中uAUG较多地出现在了含有SD序列的基因上游。比较发现,uAUG引导的序列在同义密码子使用上的偏好性较真正的编码序列差,这可能表明细菌和古菌在同义密码子使用上的偏好性也是决定基因准确地翻译起始的重要因素之一。  相似文献   

2.
We describe here a repetitive chromosomal element, which appears to be an insertion sequence, isolated from Clavibacter xyli subsp. cynodontis, a gram-positive plant-associated bacterium. The element, IS1237, is 905 bp in size, is bounded by 19-bp perfect inverted repeats and 3-bp direct repeats, and appears at least 16 times in the genome. It contains three open reading frames which show similarity to open reading frames from various other insertion sequences. We have found that there are two groups of related mobile elements: one in which two open reading frames are read separately and the other in which these two open reading frames are fuse together to give one predicted protein product. Using one of these open reading frames to search amino acid sequence databases, we found two instances in which similar reading frames flank genes carried on plasmids. We believe therefore that these plasmid-borne genes may be parts of previously unidentified mobile elements. For IS1237, a frameshift in two of the open reading frames and a stop codon in the third may indicate that this particular copy of the element is no longer active in transposition. The similarity of IS1237 to other elements from both gram-negative and gram-positive bacteria provides further evidence that mobile elements have been transferred between these two bacterial groups.  相似文献   

3.
The protein sequence of ATP/CTP:tRNA nucleotidyltransferase (cca) from Sulfolobus shibatae was used to search open reading frames in the genome of Methanococcus jannaschii. Translations of two unidentified open reading frames showed significant sequence similarity to portions of the Sulfolobus cca protein. When the two open reading frames were joined together, the expanded open reading frame was similar in sequence to the entire Sulfolobus cca protein and displayed features of the active site signature sequence proposed for members of class I enzymes within the superfamily of nucleotidyltransferases (Yue et al., 1996, RNA 2, 895–908). A possible UUG start codon was identified based on significant sequence similarity of the resulting amino-terminal region to that of Sulfolobus, and on a six-base complementarity between an adjacent upstream sequence and Methanococcus 16S rRNA. Received: 10 February 1997  相似文献   

4.
5.
6.
Summary A cluster analysis based on codon usage in genes for biological nitrogen fixation (nif genes) grouped diazotrophs into three distinct classes: anaerobes, cyanobacteria, and aerobes. In thenif genes ofKlebsiella pneumoniae there was no evidence for selection pressure in favor of highly translatable codons. However, in the nitrogen regulatory operonglnAntrBntrC of enteric bacteria the stoichiometrically high level of glutamine synthetase may be facilitated by the presence of efficiently translatable codons inglnA. Thenif genes of the cyanobacteriumAnabaena showed codon selection in favor of translational efficiency. Computation of codon adaptation indices for expression in heterologous systems indicated that the reading frames most suitable for expression ofnif genes inEscherichia coli, Bacillus subtilis, andSaccharomyces cerevisiae were present in azotobacters, clostridia, and cyanobacteria, respectively. In codon-usage-based cluster analysis, type 3 nitrogenase genes ofAzotobacter vinelandii grouped along with type 1 and type 2 genes. This is in contrast to the nucleotide sequence-based multiple alignment in which type 3 nitrogenase genes ofA. vinelandii have been reported to cluster with entirely unrelated diazotrophs such as methanogens and clostridia. This may be indicative of lateral transfer ofnif genes among widely divergent taxons. The chromosomal- and plasmid-locatednif genes of rhizobia also cluster separately in nucleotide sequence-based analysis but showed similar codon usage. These analyses suggested that the phylogeny ofnif genes drawn on the basis of nucleotide sequence homology was not masked by the taxon-specific pressure on codon usage.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) and other lentiviridae demonstrate a strong preference for the A-nucleotide, which can account for up to 40% of the viral RNA genome. The biological mechanism responsible for this nucleotide bias is currently unknown. The increased A-content of these viral genomes corresponds to the typical use of synonymous codons by all members of the lentiviral family (HIV, SIV, BIV, FIV, CAEV, EIAV, visna) and the human spuma retrovirus, but not by other retroviruses like the human T-cell leukemia viruses HTLV-I and HTLV-II. In this article, we analyzed A-bias for all codon groups in all open reading frames of several lentiviruses. The extent of lentiviral codon bias could be related to host cellular translation. By calculating codon bias indices (CBIs), we were able to demonstrate an inverse correlation between the extent of codon bias and the rate of translation of individual reading frames in these viruses. Specifically, the shift toward A-rich codons is more pronounced in pol than in gag lentiviral genes. Since it is known that Gag synthesis exceeds Pol synthesis by a factor of 20 due to infrequent ribosomal frame-shifting during translation of the gap-pol mRNA molecule, we propose that the aminoacyl-tRNA availability in the host cell restricts the lentiviral preference for A-rich codons. In addition, less A-nucleotides were found in regions of the viral genome encoding multiple functions; e.g., overlapping reading frames (tat-rev-env) or in genes that overlap regulatory sequences (nef-LTR region). Finally, the characteristics of lentiviral codon usage are presented as a phylogenetic tree without the need for prior sequence alignment.Correspondence to: B. Berkhout  相似文献   

8.
9.
A correspondence between open reading frames in sense and antisense strands is expected from the hypothesis that the prototypic triplet code was of general form RNY, where R is a purine base, N is any base, and Y is a pyrimidine. A deficit of stop codons in the antisense strand (and thus long open reading frames) is predicted for organisms with high G + C percentages; however, two bacteria (Azotobacter vinelandii, Rhodobacter capsulatum) have larger average antisense strand open reading frames than predicted from (G + C)%. The similar Codon frequencies found in sense and antisense strands can be attributed to the wide distribution of inverted repeats (stem-loop potential) in natural DNA sequences.  相似文献   

10.
11.
As synthetic biology advances, labeling of genes or organisms, like other high-value products, will become important not only to pinpoint their identity, origin, or spread, but also for intellectual property, classification, bio-security or legal reasons. Ideally information should be inseparably interlaced into expressed genes. We describe a method for embedding messages within open reading frames of synthetic genes by adapting steganographic algorithms typically used for watermarking digital media files. Text messages are first translated into a binary string, and then represented in the reading frame by synonymous codon choice. To aim for good expression of the labeled gene in its host as well as retain a high degree of codon assignment flexibility for gene optimization, codon usage tables of the target organism are taken into account. Preferably amino acids with 4 or 6 synonymous codons are used to comprise binary digits. Several different messages were embedded into open reading frames of T7 RNA polymerase, GFP, human EMG1 and HIV gag, variously optimized for bacterial, yeast, mammalian or plant expression, without affecting their protein expression or function. We also introduced Vigenère polyalphabetic substitution to cipher text messages, and developed an identifier as a key to deciphering codon usage ranking stored for a specific organism within a sequence of 35 nucleotides.  相似文献   

12.
《FEBS letters》1985,193(2):164-168
An open reading frame (ORF) preceding the cytochrome oxidase subunit II (CO II) gene in Oenothera mitochondria has four nucleotides in common with this gene. The last two nucleotides of the CO II initiation codon ATG are the first two nucleotides of the TGA termination codon in the upstream ORF. Both reading frames are cotranscribed in a bicistronic mRNA species of 1250 nucleotides in length in Oenothera. The open reading frame codes for a protein of 58 amino acids with structural homology to the ATPase subunit 8 genes in fungal and mammalian mitochondria. Using coding space optimally though overlapping genes appears to be without economical reason considering the large size of higher plant mitochondrial genomes.  相似文献   

13.
14.
In nucleic acids the N-glycosyl bonds between purines and their ribose sugar moities are broken under acid conditions. If one strand of a duplex DNA segment were more vulnerable to mutation than the other, then the archaeon Picrophilus torridus, with an optimum growth pH near zero, could have adapted by decreasing the purine content of that strand. Yet, P. torridus has an optimum growth temperature near 60°C, and thermophiles prefer purine-rich codons. We found that, as in other thermophiles, high growth temperature correlates with the use of purine-rich codons. The extra purines are often in third, non-amino acid determining, codon positions. However, as in other acidophiles, as open reading frame lengths increase, there is increased use of purine-poor codons, particularly those without purines in second, amino acid-determining, codon positions. Thus, P. torridus can be seen as adapting (a) to temperature by increasing its purines in all open reading frames without greatly impacting protein amino acid compositions, and (b) to pH by decreasing purines in longer open reading frames, thereby potentially impacting protein amino acid compositions. It is proposed that longer open reading frames, being larger mutational targets, have become less vulnerable to depurination by virtue of pyrimidine for purine substitutions.  相似文献   

15.
In the plant chloroplast genome the codon usage of the highly expressed psbA gene is unique and is adapted to the tRNA population, probably due to selection for translation efficiency. In this study the role of selection on codon usage in each of the fully sequenced chloroplast genomes, in addition to Chlamydomonas reinhardtii, is investigated by measuring adaptation to this pattern of codon usage. A method is developed which tests selection on each gene individually by constructing sequences with the same amino acid composition as the gene and randomly assigning codons based on the nucleotide composition of noncoding regions of that genome. The codon bias of the actual gene is then compared to a distribution of random sequences. The data indicate that within the algae selection is strong in Cyanophora paradoxa, affecting a majority of genes, of intermediate intensity in Odontella sinensis, and weaker in Porphyra purpurea and Euglena gracilis. In the plants, selection is found to be quite weak in Pinus thunbergii and the angiosperms but there is evidence that an intermediate level of selection exists in the liverwort Marchantia polymorpha. The role of selection is then further investigated in two comparative studies. It is shown that average relative codon bias is correlated with expression level and that, despite saturation levels of substitution, there is a strong correlation among the algae genomes in the degree of codon bias of homologous genes. All of these data indicate that selection for translation efficiency plays a significant role in determining the codon bias of chloroplast genes but that it acts with different intensities in different lineages. In general it is stronger in the algae than the higher plants, but within the algae Euglena is found to have several unusual features which are noted. The factors that might be responsible for this variation in intensity among the various genomes are discussed. Received: 6 June 1997 / Accepted: 24 July 1997  相似文献   

16.
To date, the sequences of 45 Bradyrhizobium japonicum genes are known. This provides sufficient information to determine their codon usage and G+C content. Surprisingly, B. japonicum nodulation and NifA-regulated genes were found to have a less biased codon usage and a lower G+C content than genes not belonging to these two groups. Thus, the coding regions of nodulation genes and NifA-regulated genes could hardly be identified in codon preference plots whereas this was not difficult with other genes. The codon frequency table of the highly biased genes was used in a codon preference plot to analyze the RSRj9 sequence which is an insertion sequence (IS)-like element. The plot helped identify a new open reading frame (ORF355) that escaped previous detection because of two sequencing errors. These were now corrected. The deduced gene product of ORF355 in RSRj9 showed extensive similarity to a putative protein encoded by an ORF in the T-DNA of Agrobacterium rhizogenes. The DNA sequences bordering both ORFs showed inverted repeats and potential target site duplications which supported the assumption that they were IS-like elements.  相似文献   

17.

Background  

Overlapped genes originate by a) loss of a stop codon among contiguous genes coded in different frames; b) shift to an upstream initiation codon of one of the contiguous genes; or c) by overprinting, whereby a novel open reading frame originates through point mutation inside an existing gene. Although overlapped genes are common in viruses, it is not clear whether overprinting has led to new genes in prokaryotes.  相似文献   

18.
19.
Summary The complete DNA sequence of theMicrococcus luteus spectinomycin (spc) operon and its adjacent regions has been determined. The sequence has revealed the presence of genes that are homologous to those of theEscherichia coli ribosomal and related proteins, L14, L24, L5, S8, L6, L18, S5, L30, L15, and secretion protein Y (secY), and the gene for adenylate kinase (adk). The gene arrangement in the spc operon is essentially the same as that ofE. coli except for the absence in theM. luteus spc operon of the genes for S14 and X protein that exist in theE. coli spc operon.SecY andadk seem to be composed of another operon (adk operon) with at least an open reading frame. The deduced amino acid sequences for these ribosomal proteins are well conserved among the two species (40–65% identity). Reflecting the high genomic guanine and cytosine (GC) content ofM. luteus (74%), the codon usage of the genes is extremely biased toward use of G and C, about 94% of the codon third positions being G or C. Seven codons, AUA, AAA, AGA, UUA, GUA, CUA, and CAA, all of which have A at the codon third positions, are completely absent in theM. luteus genes examined. Out of 11 genes in theM. luteus spc and adk operons, 5 (10) use GUG (UGA) and 6 (1) use AUG (UAA) as an initiation (termination) codon.  相似文献   

20.
An analytical model based on the statistical properties of Open Reading Frames (ORFs) of eubacterial genomes such as codon composition and sequence length of all reading frames was developed. This new model predicts the average length, maximum length as well as the length distribution of the ORFs of 70 species with GC contents varying between 21% and 74%. Furthermore, the number of annotated genes is predicted with high accordance. However, the ORF length distribution in the five alternative reading frames shows interesting deviations from the predicted distribution. In particular, long ORFs appear more often than expected statistically. The unexpected depletion of stop codons in these alternative open reading frames cannot completely be explained by a biased codon usage in the +1 frame. While it is unknown if the stop codon depletion has a biological function, it could be due to a protein coding capacity of alternative ORFs exerting a selection pressure which prevents the fixation of stop codon mutations. The comparison of the analytical model with bacterial genomes, therefore, leads to a hypothesis suggesting novel gene candidates which can now be investigated in subsequent wet lab experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号