首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Regeneration of lost cells in the central nervous system, especially the brain, is present to varying degrees in different species. In mammals, neuronal cell death often leads to glial cell hypertrophy, restricted proliferation, and formation of a gliotic scar, which prevents neuronal regeneration. Conversely, amphibians such as frogs and salamanders and teleost fish possess the astonishing capacity to regenerate lost cells in several regions of their brains. While frogs lose their regenerative abilities after metamorphosis, teleost fish and salamanders are known to possess regenerative competence even throughout adulthood. In the last decades, substantial progress has been made in our understanding of the cellular and molecular mechanisms of brain regeneration in amphibians and fish. But how similar are the means of brain regeneration in these different species? In this review, we provide an overview of common and distinct aspects of brain regeneration in frog, salamander, and teleost fish species: from the origin of regenerated cells to the functional recovery of behaviors.  相似文献   

2.
3.
    
The regenerative neurogenesis of the optic tectum of larval Xenopus laevis has been studied analyzing the proliferative and morphogenetic phases of the regeneration process after removal of one optic lobe. To this end, short‐term and long‐term pulses were carried out using the thymidine analog BrdU, selectively incorporated into cells during the S phase of the cell cycle. Results indicate that while in early larvae (stage 49/50, according to Nieuwkoop & Faber 1967 ) regeneration occurs mainly at the expense of the stem cells present in extensive proliferation zones (“matrix areas”) of the midbrain, in late larvae (stage 55/56) regeneration occurs at the expense of stem cells present in very limited matrix areas of the brain and of quiescent cells, which re‐enter the cell cycle following trauma. Moreover, in early larvae, morphogenesis of the optic tectum is carried out according to a precise spatio‐temporal order from rostro‐caudal to latero‐medial. By contrast, in late larvae, the topographical order of the regenerative morphogenesis of the optic lobe is completely altered. As a consequence, the regenerated optic tectum in early larvae has an apparently normal structure, while the regenerated optic tectum in late larvae lacks stratification.  相似文献   

4.
    
Endogenous cannabinoids and type-1 cannabinoid receptor (CB1) are widely produced and distributed in the central nervous system (CNS) and peripheral nerves in mammals. In addition, the detection of endocannabinoids and corresponding receptors in non nervous peripheral tissues indicates an involvement of the system in the control of a wide range of physiological activities, including reproduction. Recently, the existence of CB1 was also observed in lower vertebrates and in urochordate suggesting that the endocannabinoid system is phylogenetically conserved. Using RT-PCR, CB1 mRNA expression profiles were characterized in a wide range of tissues of the anuran amphibian, the frog, Rana esculenta. Besides a strong expression in the CNS, CB1 was also present in testis, kidney, liver, ovary, muscle, heart, spleen, and pituitary. The CB1 expression pattern has been characterized in both testis and CNS during the annual sexual cycle. In testis, CB1 is poorly expressed during the winter stasis of the spermatogenesis rising during the breeding season and resumption period. An expression profile mismatching to that observed in testis was detected in whole-brain preparations during the sexual cycle; in particular in the diencephalon, the encephalic area mainly involved in the control of reproductive functions. Furthermore, fluctuations inside isolated encephalic areas and spinal cord were observed all over the reproductive cycle. In conclusion, CB1 receptor is expressed in R. esculenta CNS and testis. As far as the gonad it concerns, our results suggest the involvement of the endocannabinoids in the control of reproductive function.  相似文献   

5.
We characterized eight microsatellite loci to study spatial and temporal population structure of Pelodytes punctatus, a European anuran that has a peculiar breeding pattern among amphibians. The eight loci proved to be highly polymorphic with the number of alleles per locus ranging from two to 15 within two populations. Cross-amplification indicates that those markers may be also useful for closely related species from the same family.  相似文献   

6.
Environmental changes, such as climate change, lead to the opening of new niches. In such situations, species that adapt to new niches can survive and/or expand their ranges. However, gene flow can hamper genetic adaptation to new environments. Alternatively, recent models have highlighted the importance of phenotypic plasticity in tracking environmental change. Here, we investigate whether phenotypic plasticity or genetic evolution (or both) allows an amphibian species to exploit two divergent climatic niches. In the Mediterranean region, the parsley frog Pelodytes punctatus breeds both in spring, as do most other species, and in autumn, a temporal niche not exploited by most other species, but which may become increasingly important with global warming. Conditions of development are dramatically different between the two seasons and deeply impact tadpole life-history traits. To determine whether these temporal niches are exploited by two genetically differentiated subpopulations, or whether the bimodal phenology arises in a panmictic population displaying plastic life-history traits, we use two complementary approaches. We measure both molecular genetic differentiation and quantitative-trait differentiation between spring and autumn cohorts, using microsatellites and common garden experiments, respectively. Seasonal cohorts were not genetically differentiated and differences in tadpole life history between cohorts were not maintained in laboratory conditions. We conclude that phenotypic plasticity, rather than genetic adaptation, allows Parsley frog to exploit two contrasting temporal niches.  相似文献   

7.
    
Pesticides commonly occur in aquatic systems and pose a substantial challenge to the conservation of many taxa. Ecotoxicology has traditionally met this challenge by focusing on short‐term, single‐species tests and conducting risk assessments based on the most sensitive species tested. Rarely have ecotoxicology data been examined from an evolutionary perspective, and to our knowledge, there has never been a phylogenetic analysis of sensitivity, despite the fact that doing so would provide insights into patterns of sensitivity among species and identify which clades are the most sensitive to a particular pesticide. We examined phylogenetic patterns of pesticide sensitivity in amphibians, a group of conservation concern owing to global population declines. Using the insecticide endosulfan, we combined previously published results across seven species of tadpoles and added eight additional species from the families Bufonidae, Hylidae, and Ranidae. We found significant phylogenetic signal in the sensitivity to the insecticide and in the existence of time lag effects on tadpole mortality. Bufonids were less sensitive than hylids, which were less sensitive than the ranids. Moreover, mortality time lags were common in ranids, occasional in hylids, and rare in bufonids. These results highlight the importance of an evolutionary perspective and offer important insights for conservation.  相似文献   

8.
  总被引:1,自引:0,他引:1  
The South African clawed frog (Xenopus laevis) can regenerate the anterior half of the telencephalon only during larval life, but such regeneration is no longer possible after metamorphosis. In order to gain a better understanding of differences between larvae and adults that are potentially related to regeneration, several experiments were conducted on larvae and froglets after the partial removal of the telencephalon. As a result, it was found that the cells in the brain proliferated actively, even in non-regenerating froglets, just as was observed in regenerating larvae after the partial removal of the telencephalon. Moreover, it was shown that although the structure was usually imperfect, even isolated single cells derived from the frog brain were able to reconstitute the lost portion when the cells were transplanted to the partially truncated telencephalon. It is therefore likely to be critical for massive organ regeneration that ependymal layer cells promptly cover the cerebral lateral ventricles at an initial stage of wound healing, as is the case observed in larvae. However, in froglets, these cells strongly adhere to one another, and they are therefore unable to move to seal off the exposed ventricle, which in turn is likely to render the froglet brain non-regenerative.  相似文献   

9.
The mechanisms by which invasive species spread through new areas can influence the spatial scale of their impact. Although previous research has focused on 'natural' dispersal rates following initial introductions, human-aided inadvertent dispersal by 'stowaways' on commercial and domestic transport is thought to be a major contributor to long-distance dispersal. Few data exist to support this assumption. Cane toads Bufo marinus were introduced to north-eastern Australia in 1935, and have since dispersed rapidly through the tropics. Based on information accumulated by community groups in Sydney, 400 km south of the cane toads' current Australian distribution, we document high rates of translocation (at least 50 toads arriving in Sydney per year). Most toads were translocated on commercial truck transport carrying landscaping and building materials from the current range of the cane toads in New South Wales and Queensland, and resulted in highly clumped locations of toad arrival reflecting primary truck transport destinations. Most introductions involved single toads (68 of 102 translocation events), but some introductions involved two to 19 animals. Adults of both sexes were represented equally but juveniles were rarely detected. High rates of translocation of adult toads of both sexes suggest that the eventual distribution of cane toads in Australia may be limited by the animals' bioclimatic tolerances rather than by an inability to reach suitable habitats, even in areas far distant from the toads' current range.  相似文献   

10.
11.
  总被引:1,自引:0,他引:1  
Larvae of the South African clawed frog (Xenopus laevis) can regenerate the telencephalon, which consists of the olfactory bulb and the cerebrum, after it has been partially removed. Some authors have argued that the telencephalon, once removed, must be reconnected to the olfactory nerve in order to regenerate. However, considerable regeneration has been observed before reconnection. Therefore, we have conducted several experiments to learn whether or not reconnection is a prerequisite for regeneration. We found that the olfactory bulb did not regenerate without reconnection, while the cerebrum regenerated by itself. On the other hand, when the brain was reconnected by the olfactory nerve, both the cerebrum and the olfactory bulb regenerated. Morphological and histological investigation showed that the regenerated telencephalon was identical to the intact one in morphology, types and distributions of cells, and connections between neurons. Froglets with a regenerated telencephalon also recovered olfaction, the primary function of the frog telencephalon. These results suggest that the Xenopus larva requires reconnection of the regenerating brain to the olfactory nerve in order to regenerate the olfactory bulb, and thus the regenerated brain functions, in order to process olfactory information.  相似文献   

12.
I developed 12 di‐ and tetranucleotide microsatellite loci for Couch's spadefoot toad (Scaphiopus couchii). These loci have 3–37 alleles per locus and observed heterozygosities ranging from 0.157 to 0.941 among 85 individuals from four populations. Global and within‐population exact tests do not reveal departure from Hardy–Weinberg expectations and all loci pairs are in linkage equilibrium. These independent markers will be useful for studies of population structure and kinship in this commonly studied amphibian. Additionally, several of these loci may be applicable for studies of other North American toads of the family Scaphiopodidae.  相似文献   

13.
The block to polyspermy in Xenopus laevis involves an interaction between a cortical granule lectin, released at fertilization, and a ligand located in the egg extracellular matrix. The egg extracellular matrix in X. laevis consists of a vitelline envelope and three distinct jelly layers, designated J1, J2 and J3. To localize cortical granule lectin ligand in the egg extracellular matrix, we used enzyme-linked lectin assays that showed that cortical granule lectin ligands were absent in J2, J3 and the vitelline envelope. Cortical granule lectin bound to a ligand(s) in J1 in a galactose-dependent fashion. In addition, we separated egg jelly macromolecules electrophoretically and, in conjunction with western blotting, have shown that J1 contains two major, high molecular weight ligands for cortical granule ligand. Finally, using confocal microscopy, we demonstrated that the ligand(s) for cortical granule lectin occupies a 20–30 μm thick band in a region of J1 just proximal to the vitelline envelope.  相似文献   

14.
The totally aquatic pipid frog Xenopus borealis produces long trains of click-like sound at high sound pressure levels (> 105 dB SPL) underwater at night. While X. borealis retains an essentially terrestrial respiratory tract, the larynx is highly modified in two ways. First, the cricoid cartilage is greatly expanded posteriorly to form a large 'box'. Portions of this cricoid box are composed of an unusual elastic cartilage. Second, portions of the arytenoid cartilages are elaborated into calcified rods with disc-like enlargements at their posterior ends. These discs are the only freely moveable components within the larynx–there are no vocal cords. Artificial stimulation of a pair of muscles controlling the discs and discrete lesions that impair their movement demonstrate that motion of the discs is both necessary and sufficient for click production. Unlike all other anurans, X borealis does not use a moving air column in sound production. A possible mechanism of click production involves two steps: (1) at first, the discs are held tighdy apposed in the midline by fluid adhesive forces, and contraction of bipennate muscles is isometric; (2) when the muscle tension exceeds the adhesive force, the discs separate with very high acceleration leaving a vacuum between them. Air rushing into the space at high speed (an implosion) produces the click. The cricoid box shapes the frequency spectrum of the clicks, and opening the box broadens the power spectrum. The power spectrum of clicks produced by males after breathing helium is unchanged.  相似文献   

15.
16.
    
Among the Amphibia, cannibalism is most commonly associated with tadpole species that exploit ephemeral systems. This behaviour may confer significant fitness benefits to those that cannibalise, given that these systems generally possess limited food resources, but will incur significant fitness costs to the cannibalised. Herein, we describe cannibalism of recently oviposited eggs of the sandpaper frog (Lechriodus fletcheri) by conspecific tadpoles as a likely adaptation to limited nutrient availability within highly ephemeral pools in which it is an obligate breeder. Field observations revealed L. fletcheri tadpoles actively preyed on conspecific eggs of recently oviposited spawn bodies, which were commonly consumed whole. When tadpoles were exposed to spawn for the first time in laboratory trials, they quickly engaged in extended periods of consumption, gorging themselves until they appeared to be full. We found this behaviour to be common in the field and suggest that conspecific eggs form a significant food resource for tadpoles of this species in the otherwise nutrient-poor systems in which they breed. This feeding strategy might be common among anurans exploiting temporary aquatic systems that are nutrient-poor and gives rise to many questions surrounding how individuals can utilise cannibalism to increase their fitness while simultaneously avoiding becoming victims of this behaviour themselves.  相似文献   

17.
18.
    
Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt‐adapted (“coastal”) and nonsalt‐adapted (“inland”) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high‐density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.  相似文献   

19.
Studies on the effects of exogenous vitamin A palminate on limb development and regeneration in anuran tadpoles carried out since late 1960s at the author’s laboratory are reviewed and discussed. Most significant was the initial discovery that vitamin A causes regeneration of complete or nearly complete limbs instead of only the missing distal part, thus altering the P-D pattern of regeneration—a phenomenon now called proximalization. Often more than one such regenerates develop per stump. Vitamin A produces proximalizing effect on regeneration cells during their dedifferentiation and blastema formation but inhibits regeneration if given once redifferentiation begins. Shank-level blastemas from treated tadpoles grafted into orbits of previously treated/untreated host tadpoles formed complete limbs. Proximalizing effect is proportionate to vitamin A concentration, duration of treatment, amputational level and stage of tadpoles. Vitamin A produces this effect also if given only prior to amputation. Its influence persists after cessation of treatment, declining with time. Proximalizing effect is correlated with natural ability in limbs to regenerate. Vitamin A improves regenerative ability and can induce it to some extent in non-regenerating limbs. Vitamin A excess retards limb development and produces stage dependent teratogenic defects. Further development of only that limb region is prevented in which differentiation is beginning when vitamin A is given. Short treatment of tadpoles beginning with limbs at spatula/paddle stage inhibited foot development in the unoperated limbs hut promoted regeneration of complete limbs from the contra-lateral amputated limbs. These dual effects were due to cells of the former differentiating and of the latter dedifferentiating when exposed to vitamin A palmitate.  相似文献   

20.
    
The tail of the Xenopus tadpole contains major axial structures, including a spinal cord, notochord and myotomes, and regenerates within 2 weeks following amputation. The tail regeneration in Xenopus can provide insights into the molecular basis of the regeneration mechanism. The regenerated tail has some differences from the normal tail, including an immature spinal cord and incomplete segmentation of the muscle masses. Lineage analyses have suggested that the tail tissues are reconstructed with lineage-restricted stem cells derived from their own tissues in clear contrast to urodele regeneration, in which multipotent blastema cells derived from differentiated cells play a major role. Comprehensive gene expression analyses resulted in the identification of a panel of genes involved in sequential steps of the regeneration. Manipulation of genes' activities suggested that the tail regeneration is regulated through several major signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号