首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
We have shown the presence of abscisic acid (ABA) in abaxial epidermal strips taken from Tulipa gesneriana and Commelina communis and that the ABA level rises in the epidermis when leaves are water stressed. ABA levels had risen 50% in the abaxial epidermis of C. communis 30 min after the leaves lost 10% of their fresh weight. Epidermis from both T. gesneriana and C. communis metabolize [14C]ABA to several products probably including phaseic acid (PA) and dihydrophaseic acid (DPA).Abbreviations ABA abscisic acid - RIA radioimmunoassay - PA phaseic acid - DPA dihydrophaseic acid - TLC thin-layer chromatography - GC gas chromatography  相似文献   

2.
George J. P. Murphy 《Planta》1984,160(3):250-255
Metabolism of R,S-[2-14C]abscisic acid (ABA) was studied in detached leaves of six wheat (Triticum aestivum) cultivars, using non-stressed leaves or leaves water stressed by desiccation to 90% of their original fresh weight. The rate constant of ABA metabolism was similar in nonstressed leaves of all cultivars. Water stress resulted in significantly lower rate constants in two cultivars which accumulated high levels of ABA when stressed, the constants decreasing by a factor of about 1.5. Rate constants for the remainder of the cultivars were not significantly different from those for the non-stressed controls. It was calculated that if decreased metabolism was the mechanism for the accumulation of ABA following water stress the rate constants of metabolism would have to be reduced by a factor of between 25 and 70. The results therefore support the hypothesis that enhanced synthesis rather than reduced degradation is the main process by which ABA levels are elevated following experimentally induced water stress. There were differences between the six cultivars in the products of ABA metabolism. Over the time period studied, oxidation to phaseic acid and dihydrophaseic acid as well as to other unidentified metabolites appeared to be the predominant pathway of ABA metabolism, rather than conjugation to ABA glucose ester and other more polar compounds.Abbreviations ABA abscisic acid - ABAGE abscisic-acid glucose ester - DPA dihydrophaseic acid - PA phaseic acid  相似文献   

3.
H. Lehmann  K. Glund 《Planta》1986,168(4):559-562
The biotransformation of abscisic acid (ABA) was studied in cell suspension cultures of Lycopersicon esculentum. The ABA was converted by the cells to phaseic acid, nigellic acid, dihydrophaseic acid, abscisic acid--D-glucopyranosyl ester (ABA-Glc) and other ABA and phaseic acid conjugates. Investigation of their cellular distribution showed that the conjugated forms were located only in the vacuoles whereas ABA and its acidic metabolites were found mainly in the extravacuolar fractions. Our results, together with a number of studies on the increase of ABA-Glc as a response to stress, allow us to propose that ABA-Glc is irreversibly compartmented in the vacuoles of plant cells.Abbreviations ABA abscisic acid - ABA-Glc -D-glucopyranosyl ester of ABA - DPA 4-dihydrophaseic acid; nigellic acid=3-methyl-5-(1-hydroxy-2-hydroxymethyl-6-dimethyl-4-oxo-cyclohex-2-enyl)-penta-2Z, 4E-dienoic acid - PA phaseic acid  相似文献   

4.
We have developed a radioimmunoassay (RIA) for abscisic acid (ABA) in the 0.1 ng to 2.5 ng range. Antibodies were obtained from rabbits immunized with ABA bound via its carboxyl group to bovine serum albumin. Cross-reactivity studies indicate that ABA esters are completely cross-reactive with ABA, while trans, trans abscisic acid (t-ABA) phaseic acid (PA) and dihydrophaseic acid (DPA) have much lower but significant cross-reactivities. Purification methods which reduce the levels of cross-reacting substances are described.Abbreviations RIA radioimmunoassay - DPA 4-dihydrophaseic acid - PA phaseic acid - GC gas chromatography - HPLC high performance liquid chromatography - TLC thin-layer chromatography - BSA bovine serum albumin - ABA abscisic acid - t-ABA trans, trans abscisic acid - IAA indoleacetic acid  相似文献   

5.
The 6,6,6-[2H]-analogues of abscisic acid (ABA), phaseic (PA) and dihydrophaseic (DPA) acids were used in GC-MS-SIM determination of free and total alkali hydrolyzable ABA, PA and DPA in the pericarp of tomato (Lycopersicon esculentum L. cv. Pik Red) fruit. Determinations were made on breaker-stage fruit stored 1, 2, 3 or 4 weeks at 2.5°C or at 10°C, and after subsequent ripening for 1 week in darkness at 20°C. Two-fold increases in levels of ABA occurred after storage at low temperatures with a slightly but significantly greater increase in ABA level occurring with 2.5°C storage. These increases in ABA levels were not associated with the appearance of damage symptoms that occurred with storage at the chilling temperature (2.5°C). Differences in ABA metabolism were found resulting from storage at the two temperatures, 2.5 or 10°C. Significantly greater DPA levels were found after 10°C storage than after 2.5°C storage (2 weeks). Levels of ABA ester-conjugates increased with 20°C ripening only after 10°C storage while free ABA levels decreased after both storage temperature conditions. Levels of DPA conjugates also increased only after 20°C ripening following 10°C storage. A longer period of storage resulted in decreases of free DPA levels after 10°C storage but increased DPA levels were found after 2.5°C storage.Abbreviations ABA abscisic acid - PA phaseic acid - DPA dihydrophaseic acid - GC-MS-SIM gas chromatography-mass spectrometry-selected ion monitoring - HPLC high pressure liquid chromatography - fw. fresh weight author for correspondence  相似文献   

6.
GA17, GA19, GA20, GA29, GA44 and 13-hydroxy-GA12, now named GA53, were identified by GC-MS in immature seeds of Vicia faba (broad bean). Also identified were a GA catabolite, two polyhydroxykauranoic acids, and abscisic, phaseic and dihydrophaseic acids. The GAs of Vicia are hydroxylated at C-13, in common with those of other legumes. However the GAs of Vicia are not hydroxylated at C-3, nor do they appear to be readily conjugated. In these respects Vicia resembles Pisum, another member of the tribe Viciae. Vicia differs from Phaseolus and Vigna, of the tribe Phaseoleae, in both these respects.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - GAn gibberellin An - GC gas chromatography - GC-MS gas chromatography mass spectrometry - KA kauranoic acid - PA phaseic acid - TLC thin layer chromatography  相似文献   

7.
Suboptimal nitrogen nutrition, leaf aging, and prior exposure to water stress all increased stomatal closure in excised cotton (Gossypium hirsutum L.) leaves supplied abscisic acid (ABA) through the transpiration stream. The effects of water stress and N stress were partially reversed by simultaneous application of kinetin (N6-furfurylaminopurine) with the ABA, but the effect of leaf aging was not. These enhanced responses to ABA could have resulted either from altered rates of ABA release from symplast to apoplast, or from some post-release effect involving ABA transport to, or detection by, the guard cells. Excised leaves were preloaded with [14C]ABA and subjected to overpressures in a pressure chamber to isolate apoplastic solutes in the exudate. Small quantities of 14C were released into the exudate, with the amount increasing greatly with increasing pressure. Over the range of pressures from 1 to 2.5 MPa, ABA in the exudate contained about 70% of the total 14C, and a compound co-chromatographing with phaseic acid contained over half of the remainder. At a low balancing pressure (1 MPa), release of 14C into the exudate was increased by N stress, prior water stress, and leaf aging. Kinetin did not affect 14C release in leaves of any age, N status, or water status. Distribution of ABA between pools can account in part for the effects of water stress, N stress, and leaf age on stomatal behavior, but in the cases of water stress and N stress there are additional kinetinreversible effects, presumably at the guard cells.Abbreviations and symbols ABA abscisic acid - PA phaseic acid - w water potential  相似文献   

8.
Embryos from dormant and stratified Fraxinus americana seed were incubated with (S)-2-14C-abscisic acid (ABA) under a variety of conditions. Both dormant and stratified embryos rapidly metabolize abscisic acid to phaseic acid, dihydrophaseic acid, and an unidentified polar metabolite apparently derived from dihydrophaseic acid. Although the stratified embryos may have an increased capacity to metabolize abscisic acid, our calculations suggest that such an increased capacity would probably not be physiologically significant.  相似文献   

9.
Seven day old seedlings of Pisum sativum L., cv. Kleine Rheinländerin, were wilted for 3 days. After partially removing the roots, they were rewatered and at the same time radioactive abscisic acid([1-14C]ABA, spec. activity 1.7·108d s-1mmol-1) was applied for 1 h via the xylem of the roots. After 24 h, 4 days, and 12 days the seedlings were extracted and the metabolites of ABA were analyzed by means of thin-layer and gas chromatography in combination with mass spectrometry, autoradiography, and scintillation counting. Phaseic acid (PA) and dihydrophaseic acid (DPA) were identified as metabolites of ABA. The presence of another ABA-metabolite was also demonstrated. From its mass spectrum it has been postulated that this metabolite is 4-desoxy-ABA. In addition to these substances, several other metabolites, which are more polar than ABA and its known degradation products, were present in the seedlings. The quantity and number of these unknown metabolites increased with time.Abbreviations ABA abscisic acid - PA phaseic acid - DPA dihydrophaseic acid - TLC thin-layer chromatography - GC gas chromatography - PPO 2,5-diphenyloxazole - POPOP 2,2-p-phenylen bis(5-phenyloxazole)  相似文献   

10.
Metabolism of abscisic acid (ABA) was studied after wilting and upon recovery from water stress in individual, detached leaves of Phaseolus vulgaris L. (red kidney bean). Loss of turgor was correlated with accumulation of ABA and its metabolites, resulting in a 10-fold increase in the level of phaseic acid (PA) and a doubling of the level of conjugated ABA. The level of conjugated ABA in turgid leaves was no higher than that of the free acid. These results indicate that accumulation of ABA in wilted leaves resulted from a stimulation of ABA synthesis, rather than from a release from a conjugated form or from inhibition of the metabolism of ABA. The rate of synthesis of ABA was at its maximum between 2.5 and 5 h after turgor was lost, and slackened there-after. In wilted leaves, the rate of conversion of ABA to PA climbed steadly until it matched the rate of synthesis, after about 7.5 h. Upon rehydration of sections from wilted leaves, the rate of synthesis of ABA dropped close to zero within about 3 h, while the rate of conversion to PA accelerated. Formation of PA was two to four times faster than in sections maintained in the wilted condition; it reached a rate sufficient to convert almost one-half of the ABA present in the tissue to PA within 1 h. In contrast, the alternate route of metabolism of ABA, synthesis of conjugated ABA, was not stimulated by rehydration. The role of turgor in the stimulation of the conversion of ABA to PA was investigated. When leaves that had been wilted for 5 h were rehydrated to different degrees, the amount of ABA which disappeared, or that of PA which accumulated during the next 3 h, did not depend linearly on the water potential of the rehydrated leaf. Rather, re-establishment of the slightest positive turgor was sufficient to result in maximum stimulation of conversion of ABA to PA.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - PA phaseic acid - leaf leaf water potential - osmotic pressure  相似文献   

11.
A monoclonal antibody PA3-2-B3, IgG1 (Λ) is described which specifically recognizes phaseic acid and shows very little cross-reactivity (0.14%) with abscisic acid or dihydrophaseic acid (0.88%). Based on this antibody, an enzyme immunoassay was developed which displays a linearity range from 15 pg to 3 ng of phaseic acid. Results obtained with this assay agree with those obtained by gas chromatography-electron capture detection. Using the novel enzyme immunoassay, as well as an established immunoassay for abscisic acid, levels of these two compounds in leaves of Phaseolus vulgaris were determined as a function of plant age, water stress, recovery from stress, and feeding of abscisic acid through the transpiration stream. The production of phaseic acid in a microsomal system from bean leaves was demonstrated. The results show a regulation of the plant's capacity to metabolize abscisic acid to phaseic acid as a function of water stress.  相似文献   

12.
Achenes ofLactuca sativa L. cv. Grand Rapids were treated with (±) 2-[14C]-abscisic acid (ABA) at 105 - or 2-106 M for 6, 12, 24, 48 or 96 h in darkness at 24°C. They were then extracted in 80% ethanol. Two acidic diethyl ether phases which contained the free acids and the acids released after mild alkaline hydrolysis respectively, were analyzed as well as the radioactivity which remained in the final aqueous phase. For treatment durations between 6 and 96 h, the major part of the radioactivity was found in the free phase, in the form of ABA. For treatment durations up to 48 h, no radioactivity was detected at the Rf of phaseic acid or dihydrophaseic acid (free and hydrolysed phases). After 96 h culture on 105 M ABA, dihydrophaseic acid was present, but only in very small quantities. Two ABA metabolites were detected. One was characterized as β-d -glucopyranosyl abscisate since its Rf was the same as that of an authentic sample in three different solvent systems and also since it released ABA on mild alkaline hydrolysis. It increased steadily with time and represented the main metabolite. The other metabolite found in the aqueous phase after mild alkaline hydrolysis and extraction with ether at pH 3 was a very polar compound, resistant to alkaline hydrolysis in the presence of concentrated ammonia and to methylation. It was, however, metabolized by apple embryo, yielding essentially dihydrophaseic acid and an ester which released dihydrophaseic acid on mild alkaline hydrolysis. These results indicate that under the conditions tried, the metabolism of [14C]-ABA by lettuce achenes leads almost exclusively to the formation of conjugates, oxidative metabolism of ABA being almost non-existent. Separate analysis of the integuments and of the endosperm plus embryo after culture of whole achenes for 48 h in the presence of 105 M [14C]-ABA showed that ABA metabolism occurred only in the endospermembryo tissue.  相似文献   

13.
When excised, light-grown leaves of Hordeum vulgare were fed with (±)-[2-14C]-abscisic acid and stressed until they had lost 12% of their original fresh weight, marked changes in the distribution of radioactivity between abscisic acid and its catabolites were observed. Wilted leaves were less able than their turgid counterparts to transform (±)-[2-14C]-abscisic acid into 2-hydroxymethyl abscisic acid, dihydrophaseic acid and water-soluble conjugates of abscisic acid. Water stress had little effect on the production of phaseic acid although refeeding studies with [14C]-phaseic acid showed that the step from phaseic acid to dihydrophaseic acid was inhibited in wilted leaves. Evidence was obtained which suggested that these changes did not result from dilution of applied, radiolabelled substrate by endogenous abscisic acid. The catabolites of (±)-abscisic acid were identified by capillary gas chromatography-mass spectrometry.  相似文献   

14.
Radioimmunoassay for the determination of free and conjugated abscisic acid   总被引:8,自引:0,他引:8  
Elmar W. Weiler 《Planta》1979,144(3):255-263
The characterization and application of a radioimmunoassay specific for free and conjugated abscisic acid (ABA) is reported. The antibodies produced against a bovine serum albumin-(±)-ABA conjugate have a high affinity for ABA (Ka=1.3x109l mol-1). Trans, trans-ABA and related compounds, such as xanthoxin, phaseic acid, dihydrophaseic acid, vomifoliol or violaxanthin do not interfere with the assay. The detection limit of this method is 0.25x10-12 mol ABA, the measuring range extends to 20x10-12 mol, and average recoveries are 103%. Because of the high specificity of this immunoassay, no extract purification steps are required prior to analysis. Several hundred plants can be analyzed per day in a semi-automatic assay performance. ABA has been detected in all higher plant families examined, but was absent in the blue-green alga, Spirulina platensis, the liverwort Marchantia polymorpha, and two species of fungi.Abbreviations ABA abscisic acid - BHT 2.6-di-t-butyl-4-methyl phenol - TLC thin-layer chromatography - HSA human serum albumin Part 7 in the Series: Use of Immunoassay in Plant Science  相似文献   

15.
Roots of Acer pseudoplatanus seedlings grown in liquid nutrient medium contained much lower levels of both free and bound abscisic acid than did leaves. The levels of free abscisic acid were similar in young expanding and of mature leaves, but lower in older senscing leaves. Growing plants under long days or short days did not influence the levels of free and bound abscisic acid in leaves. However, under both long days and short days, levels of bound abscisic acid were lower at the end of the dark period than 8 h later during the light period. Phaseic acid was also detected during the light period but never at the end of the dark period.Abbreviations ABA abscisic acid - PA phaseic acid - SD short day - GLC gas-liquid chromatography - LD long day  相似文献   

16.
G. V. Hoad  P. Gaskin 《Planta》1980,150(4):347-348
Phloem sap collected from Yucca and coconut inflorescence stalks was shown to contain abscisic acid (ABA) and trace amounts of 2-trans ABA. In coconut sap, two compounds probably derived from ABA with mass spectra consistent with their being dihydrophaseic acid and either hydroxyphaseic acid or oxo-dihydrophaseic acid were also found to be present.Abbreviations ABA abscisic acid - TMSi trimethylsilyl - GLC(EC) gas chromatography (electron capture) - GC-MS gas chromatography=mass spectrometry  相似文献   

17.
The sites of abscisic acid (ABA) synthesis and metabolism in Ricinus communis L. were investigated by analyzing the levels of ABA and its two metabolites phaseic acid (PA) and dihydrophaseic acid (DPA) in the shoot tips, mature leaves, and phloem sap of stressed and nonstressed plants.  相似文献   

18.
A. D. Parry  M. J. Babiano  R. Horgan 《Planta》1990,182(1):118-128
Evidence has been obtained which is consistent with 9-cis-neoxanthin being a major precursor of abscisic acid (ABA) in higher plants. A mild, rapid procedure was developed for the extraction and analysis of carotenoids from a range of tissues. Once purified the carotenoids were identified from their light-absorbance properties, reactions with dilute acid, high-performance liquid chromatography Rts, mass spectra and the quasiequilibria resulting from iodine-catalysed or chlorophyllsensitised photoisomerisation. Two possible ABA precursors, 9-cis-neoxanthin and 9-cis-violaxanthin, were identified in extracts of light-grown and etiolated leaves (of Lycopersicon esculentum, Phaseolus vulgaris, Vicia faba, Pisum sativum, Cicer arietinum, Zea mays, Nicotiana plumbaginifolia, Plantago lanceolata and Digitalis purpurea), and roots of light-grown and etiolated plants (Lycopersicon, Phaseolus and Zea). The 9,9-di-cisisomer of violaxanthin was synthesised but its presence was not detected in any extracts. Levels of 9-cis-neoxanthin and all-trans-violaxanthin were between 20- to 100-fold greater than those of ABA in light-grown leaves. The levels of 9-cis-violaxanthin were similar to those of ABA but unaffected by water stress. Etiolated Phaseolus leaves contained reduced amounts of carotenoids (15–20% compared with light-grown leaves) but retained the ability to synthesise large amounts of ABA. The amounts of ABA synthesised, measured as increases in ABA and its metabolites phaseic acid and dihydrophaseic acid, were closely matched by decreases in the levels of 9-cis-neoxanthin and all-trans-violaxanthin. In etiolated seedlings grown on 50% D2O, deuterium incorporation into ABA was similar to that into the xanthophylls. Relative levels of carotenoids in roots and light-grown and etiolated leaves of the ABA-deficient mutants, notabilis, flacca and sitiens were the same as those found in wild-type tomato tissues.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - PA phaseic acid - t trans - Xan xanthoxin - flc flacca - not notabilis - sit sitiens The authors would like to thank the following for their help and advice: G. Britton (Department of Biochemistry, University of Liverpool, UK), B.H. Davies (Department of Biochemistry, University of Wales, Aberystwyth), P. Molnar, J. Szabolcs, D.C. Walton (Department of Biology, Suny, Syracuse, N.Y., USA), and Mr. J.K. Heald for his expert operation of the mass spectrometer. A.D.P. was supported initially by a Science and Engineering Research Council CASE award with Shell Biosciences, Sittingbourne, Kent, UK, and later by a Agricultural and Food Research Council (AFRC) grant. M.J.B. received a NATO fellowship. The mass spectrometer and HPLC-photodiode-array detector were purchased with funds provided by the AFRC.  相似文献   

19.
Summary We investigated abscisic acid (ABA) metabolism among Norway and white spruce somatic embryo cultures which exhibited differences in maturation response when placed on racemic abscisic acid [(±)-ABA]. Differences in metabolic rate among the spruce genotypes could affect the ABA pool available for the maturation process, and might therefore be responsible for the differences in maturation response. The production of cotyledonary (stage 3) somatic embryos in cultures (genotypes) of Norway spruce (PA86:26A and PA88:25B) and of white spruce (WS1F cryoD and WS46) was compared. In each species pair one of the two genotypes failed to show stage 3 embryo development (respectively, PA88:25B and WS46). The investigation of ABA metabolism of each species pair showed that no substantial differences in ABA consumption or in the production of metabolites occurred. In each case ABA was metabolized to phaseic acid and dihydrophaseic acid over the 42-day culture period, metabolites were recoverable from the agar-solidified medium, and the sum of residual ABA and metabolites were equivalent to the ABA initially supplied. The results indicate that the process of ABA metabolism occurs essentially independently of somatic embryo maturation. NRCC no. 37345.  相似文献   

20.
Summary When pea seedlings lose about 5% of their water content the abscisic acid ((+)-ABA) level of the shoots increases ca. 20 times and the level of bound ABA, in all probability ABA-glucose, ca.7-10 times. After watering both ABA and bound ABA contents decrease within 24–48 h to the level in the control plants.After application of (±)-[2-14C] ABA to wilted pea shoots at the time of watering radioactive substances appear in the water-soluble, ether-insoluble fraction of ethanolic extracts and increase with time whereas radioactivity in the acidic ether fraction decreases. The neutral ether fraction remains free of radioactivity. Three radioactive zones, A, B, and C, are seen on chromatograms of the water-soluble fraction. A increases considerably within the entire experimental time, whereas B increases in the first 4–8 h after application and subsequently decreases. The third substance, C, which releases free ABA after hydrolytic treatment, does not change during the experiment. Chromatograms of the acidic ether fraction yield ABA and a substance staying at the origin, possibly phaseic acid and/or dihydrophaseic acid. Only the activity of ABA decreases during the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号