首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the pH-sensitive absorbance of 5 (and 6)-carboxy-4',5'- dimethylfluorescein, we investigated the regulation of cytoplasmic pH (pHi) in monkey kidney epithelial cells (BSC-1). In the absence of HCO3-, pHi is 7.15 +/- 0.1, which is not significantly different from pHi in 28 mM HCO3-, 5% CO2 (7.21 +/- 0.07). After an acid load, the cells regulate pHi in the absence of HCO3- by a Na+ (or Li+)-dependent, amiloride-inhibitable mechanism (indicative of Na+/H+ antiport). In 28 mM HCO3-, while still dependent on Na+, this regulation is only blocked in part by 1 mM amiloride. A partial block is also observed with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (1 mM). With cells pretreated with DIDS, 1 mM amiloride nearly totally inhibits this regulation. Cl- had no effect on pHi regulation in the acidic range. In HCO3(-)-free saline, Na+ removal leads to an amiloride-insensitive acidification, which is dependent on Ca2+. In 28 mM HCO3-, Na+ (and Ca2+) removal led to a pronounced reversible and DIDS-sensitive acidification. When HCO3- was lowered from 46 to 10 mM at constant pCO2 (5%), pHi dropped by a DIDS-sensitive mechanism. Identical changes in pHo (7.6 to 6.9) in the nominal absence of HCO3- led to smaller changes of pHi. In the presence but not in the absence of HCO3-, removal of Cl- led to a DIDS-sensitive alkalinization. This was also observed in the nominal absence of Na+, which leads to a sustained acidification. It is concluded that in nominally bicarbonate-free saline, the amiloride-sensitive Na+/H+ antiport is the predominant mechanism of pHi regulation at acidic pHi, while being relatively inactive at physiological values of pHi. In bicarbonate saline, two other mechanisms effect pHi regulation: a DIDS-sensitive Na+-HCO3- symport, which contributes to cytoplasmic alkalinization, and a DIDS-sensitive Cl-/HCO3- exchange, which is apparently independent of Na+.  相似文献   

2.
The all-transglycolytic synthesis of lacto-N-biose I (Galbeta1-3GlcNAc) and 3'-sialyl-lacto-N-biose I (NeuAcalpha2-3Galbeta1-3GlcNAc) was performed. The disaccharide lacto-N-biose I was obtained by use of p-nitrophenyl beta-D-galactopyranoside as the donor, 2-acetamido-2-deoxy-D-glucopyranose as the acceptor and Xanthomonas manihotis beta-D-galactosidase as the catalyst. The reaction was shown to be regiospecific, with a high molar yield (about 55%) with respect to the donor. Lacto-N-biose I obtained by this method was used as the acceptor for a subsequent enzymatic reaction catalyzed by Trypanosoma cruzi trans-sialidase in which 2'-(4-methylumbellyferyl)-alpha-D-N-acetylneuraminic was used as the donor of the N-acetylneuraminil moiety. The reaction generated the product, 3'-sialyl-lacto-N-biose I, regiospecifically and with a molar yield of about 35%.  相似文献   

3.
The N-terminal portion of parathyroid hormone is critical for PTH-1 receptor (P1R) activation and has been postulated to be alpha-helical when bound to the receptor. We investigated whether substitution of the sterically hindered and helix-promoting amino acid alpha-aminoisobutyric acid (Aib) in N-terminal PTH oligopeptides would improve the capacity of the peptide to activate the P1R. Analysis of the effects of individual Aib substitutions at each position in [Ala(3,12),Gln(10),Har(11),Trp(14)]PTH(1-14)NH(2) ([M]PTH(1-14)) on cAMP-stimulating potency in HKRK-B28 cells revealed that Aib at most positions diminished potency; however, Aib at positions 1 and 3 enhanced potency. Thus [Aib(1,3),M]PTH(1-14) was approximately 100-fold more potent than [M]PTH(1-14) (EC(50) = 1.1 +/- 0.1 and 100 +/- 20 nm, respectively), approximately 100,000-fold more potent than native PTH(1-14), and 2-fold more potent than PTH(1-34). The shorter peptide, [Aib(1,3),M]PTH(1-11), was also fully efficacious and 1,000-fold more potent than [M]PTH(1-11) (EC(50) 4 +/- 1 nm versus 3 +/- 1 microm). In cAMP stimulation assays performed in COS-7 cells expressing P1R-delNt, a receptor that lacks most of the N-terminal extracellular domain, [Aib(1,3),M]PTH(1-14) was 50-fold more potent than [M]PTH(1-14) (EC(50) = 0.7 +/- 0.2 versus 40 +/- 2 nm) and 1,000-fold more potent than PTH(1-34) (EC(50) = 700 nm). [Aib(1,3),M]PTH(1-14), but not PTH(1-34), inhibited the binding of (125)I-[Aib(1,3),Nle(8),Gln(10),Har(11),Ala(12),Trp(14),Arg(19),Tyr(21)]PTH(1-21)NH(2) to hP1R-delNt (IC(50) = 1,600 +/- 200 nm). The Aib(1,3) substitutions in otherwise unmodified PTH(1-34) enhanced potency and binding affinity on hP1R-delNt, but they had no effect for this peptide on hP1R-WT. Circular dichroism spectroscopy demonstrated that the Aib-1,3 substitutions increased helicity in all peptides tested, including PTH(1-34). The overall data thus suggest that the N-terminal residues of PTH are intrinsically disordered but become conformationally constrained, possibly as an alpha-helix, upon interaction with the activation domain of the PTH-1 receptor.  相似文献   

4.
Nucleophilic displacement of the tosyloxy group in 7-(2-hydroxy-3-p-toluenesulfonyloxypropyl)theophylline (1) with azide anion afforded 7-(3-azido-2-hydroxypropyl)theophylline (2). Reduction of the 3-azido group in 2 with Ph3P/Py/NH4OH afforded the 3-amino derivative 4, alternatively obtained by regioselective amination of 7-(2,3-epoxypropyl)theophylline (3). Selective acetylation of 4 gave the N-acetyl derivative 5. 1,3-Dipolar cycloaddition of the azide group in 2 with N1-propargyl thymine (6) afforded the regioisomeric triazole 7.  相似文献   

5.
As a chiral precursor for the important anticoagulant Edoxaban, enantioselective synthesis of (S)-3-cyclohexene-1-carboxylic acid is of great significance. The complicated procedures and generation of massive solid waste discourage its chemical synthesis, and the alternative biocatalysis route calls for an enzyme capable of asymmetric hydrolysis of racemic methyl-3-cyclohexene-1-carboxylate. To this end, we engineered the E. coli esterase BioH for improved S-enantioselectivity via rational design. By combinatorial modulation of steric and aromatic interactions, a positive mutant Mu3 (L24A/W81A/L209A) with relatively high S-selectivity in hydrolyzing racemic methyl-3-cyclohexene-1-carboxylate was obtained, improving the enantiomeric excess from 32.3% (the wild type) to 70.9%. Molecular dynamics simulation was conducted for both (R)- or (S)- complexes of the wild type and Mu3 to provide hints for the mechanism behind the increased S-selectivity. Moreover, the reaction conditions of Mu3 in methyl-3-cyclohexene-1-carboxylate hydrolysis was optimized to improve the conversion rate to 2 folds.  相似文献   

6.
A novel class of 1-[4-(1H-benzoimidazol-2-yl)-phenyl]-3-[4-(1H-benzoimidazol-2-yl)-phenyl]-ureas are described as potent inhibitors of heparanase. Among them are 1,3-bis-[4-(1H-benzoimidazol-2-yl)-phenyl]-urea (7a) and 1,3-bis-[4-(5,6-dimethyl-1H-benzoimidazol-2-yl)-phenyl]-urea (7d), which displayed good heparanase inhibitory activity (IC(50) 0.075-0.27 microM). Compound 7a showed good efficacy in a B16 metastasis model.  相似文献   

7.
Chemoenzymatic synthesis of 1- O-hexadecyl-2- O-palmitoyl- sn-glycerol was achieved by esterification of 1- O-hexa-decyl-sn-glycerol, with palmitic acid in the presence of N,N-dicyclohexylcarbodiimide, and then subjected to alco-holysis catalysed by an immobilized 1,3-specific lipase. The highest yield (90% from 0.3 mM) was obtained in 3 h, using methyl isobutyl ketone as solvent with water activity 0.2.  相似文献   

8.
Three substrate analogs of dopamine beta-hydroxylase, viz. 2-X-3-(p-hydroxyphenyl)-1- propenes (where X = Br, Cl, H), have been synthesized, and all behave as substrates requiring O2 and ascorbate for the enzyme-catalyzed hydroxylation reaction. The products have been characterized by mass spectrometry as the respective 2-X-3-hydroxy-3-(p-hydroxyphenyl)-1- propenes . The relative kcat values for these compounds at pH 5.5, 0.25 mM O2 are 49 min-1 (2-H), 8.6 min-1 (2-Cl), and 7.0 min-1 (2-Br). All three compounds have the characteristics of mechanism-based inhibitors of dopamine beta-hydroxylase since incubation of enzyme with these compounds under turnover conditions leads to a time-dependent loss of activity. The kinact values at pH 5.5, 0.25 mM O2 are 0.08, 0.20, and 0.51 min-1, respectively, for the 2-Br-, 2-Cl-, and 2-H-substituted analogs. No reactivation was observed after exhaustive dialysis of enzyme inactivated by 2-Br-3-(p-hydroxyphenyl)-1-propene, suggesting irreversible inactivation of dopamine beta-hydroxylase.  相似文献   

9.
Yu L  Jin Y  Jianzhou  Ye C  Wang J  Hu G  Zeng S 《Chirality》2012,24(4):303-306
(1R, 3R)-1-(1, 3-Benzodioxol-5-yl)-2-(chloroacetyl)-2, 3, 4, 9-tetrahydro-1H-pyrido[3, 4-b]indole-3-carboxylic acid methyl ester ((1R, 3R)-Cpe) is a key intermediate used in the synthesis of tadalafil, a highly selective phosphodiesterase type-5 inhibitor. In the present study, a chiral high-performance liquid chromatography method was developed for the simultaneous determination of diastereoisomeric and enantiomeric impurities in (1R, 3R)-Cpe. Separation was performed on an Ultron ES-OVM chiral column (150 mm × 4.6 mm, 5 μm,) with a guard column at a column temperature of 30°C. The gradient elution used was acetonitrile (solvent A) and water (solvent B), and the following elution program was used at a flow rate of 1 ml/min: 0-5 min (80% B), 5-10 min (80-60% B), 10-12 min (60% B). The detection wavelength was 220 nm. The four isomers of Cpe were baseline separated in 12 min. The results of method validation indicated that the method was specific and sensitive and was suitable for the quality control of diastereoisomeric and enantiomeric impurities in (1R, 3R)-Cpe.  相似文献   

10.
Regioselective functionalization of 2,4,5,6-tetrachloro-1, 3-dicyanobenzene (TCDCB) by nucleophilic substitution of the chlorine at C(4) with L-Ala, L-Phe or L-Pro, followed by amide-bond formation to lipophilic amines containing strong pi-donor group, and by final introduction of the spacer 3-aminopropyltriethoxysilyl (APTES), provided a number of new brush-type chiral selectors in the form of 1-2:1 mixture of 2,4 and 4,6-di(alkyl)amino regioisomers (8/9, 10/11, 12/13, 14/15, 20/21, 23/24). Linking these to silica gel (Nucleosil 100-5) gave new chiral stationary phases for HPLC columns (CSP I-CSP VI). Being strong pi-basic selectors, most of these columns exhibited good resolution properties for pi-acid test racemates (TR 1-TR 9), specifically rac 3, 5-dinitrobenzoyl-alpha-amino acid isopropyl-esters (DNB-AA). CSP V [1,3-dicyano-2,5(5,6)-dichloro-6(2)-(gamma'-silica bound propylamino)-4-N-?[N-butyl]-N'-[(1R)-cyclohexylethyl]-N'-[napht hylmet hyl]acetamido?-aminobenzene] and particularly the dipeptide-containing CSP VI [2,5(5,6)-dichloro-6(2)-(gamma'-silica bound propylamino)-4-N-(3', 5'-dimethylanilido)-L-alanyl-L-prolyl-aminobenzene] proved to have the highest efficiency, comparable with the best commercial brush-type columns with pi-donor properties. Further evidence revealed that multiple hydrogen bonding via the amide group in the chiral environment and pi-pi interaction play a major role in chiral recognition, whereas steric perturbations via nonbonding VDW interactions contribute substantially only to the resolution of CSP III [2,5(5,6)-dichloro-6(2)-(gamma'-silica bound propylamino)-4-N-(cyclohexylamido)-L-alanyl-aminobenzene]. This contribution is minor for the other CSPs.  相似文献   

11.
A series of novel 1- or 3-(3-amino-1-phenyl propyl)-1,3-dihydro-2H-benzimidazol-2-ones as selective norepinephrine reuptake inhibitors was discovered. Several compounds such as 15 and 20 showed good hNET potency. Compounds 15 and 20 also displayed excellent selectivity at hNET that appeared superior to those of reboxetine and atomoxetine (4 and 5).  相似文献   

12.
A new series of 1,3-dipropyl-8-(1-phenylacetamide-1H-pyrazol-3-yl)-xanthine derivatives has been identified as potent A(2B) adenosine receptor antagonists. The products have been evaluated for their binding affinities for the human A(2B), A(1), A(2A), and A(3) adenosine receptors. N-(4-chloro-phenyl)-2-[3-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-5-methyl-pyrazol-1-yl] (11c) showed a high affinity for the human A(2B) adenosine receptor K(i)=7nM and good selectivity (A(1), A(2A), A(3)/A(2B)>140). Synthesis and SAR of this novel class of compounds is presented herein.  相似文献   

13.
For the purpose of obtaining orally potent VLA-4 inhibitors, we have carried out structural modification of the (N'-phenylureido)phenyl group in compound 1, where the group was found to be attributed to poor pharmacokinetic profile in our previous research. Through modification, we have identified several compounds with both potent in vitro activity and improved oral exposure. In particular, compound 7e with 7-fluoro-2-(1-methyl-1H-indol-3-yl)-1,3-benzoxazolyl group as a novel replacement of the (N'-phenylureido)phenyl group significantly inhibited eosinophil infiltration into bronchoalveolar lavage fluid at 15mg/kg in an Ascaris-antigen-induced murine bronchial inflammatory model, and its efficacy was comparable to that of the anti-mouse α(4) antibody (R1-2).  相似文献   

14.
BSC-1 kidney epithelial cells derived from the African green monkey are known to express a Na+HCO3- symport (Jentsch, T. J., Schill, B. S., Schwartz, P., Matthes, H., Keller, S. K., and Wiederholt, M. (1985) J. Biol. Chem. 260, 15554-15560). In the present work, 4,4-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive 22Na+ uptake into confluent monolayers of BSC-1 is measured in the presence of ouabain (10(-4) M) and amiloride (10(-3) M) to define the interactions between Na+ and HCO3- binding and pH. Dependence of DIDS-sensitive 22Na+ fluxes on either Na+ or HCO3- can be described by Michaelis-Menten kinetics. External apparent Km for HCO3- decreases with increasing Na+ concentration (Km app (HCO3-) = 36 +/- 10, 18 +/- 5, and 9 +/- 3 mM at 20, 45, and 151 mM Na+o, respectively (pHo = 7.4)). Similarly, external apparent Km for Na+ decreases with increasing HCO3- concentration (Km app (Na+) = 73 +/- 22, 28 +/- 8, and 14 +/- 4 mM at 6, 17, and 56 mM HCO3o-, respectively (pHo = 7.4)). Vmax app remains constant within the experimental error. When data are replotted as a function of calculated NaCO3- concentration, they can be approximated by a single Michaelis-Menten equation. DIDS-sensitive uptake at constant Na+ and HCO3- displays a broad pH optimum in the range between 7.2 and 7.6. The data are compatible with the ion pair model in which the transported species, NaCO3-, binds to the transport site with Km = 15.3 +/- 4 microM. However, the data may also be fitted by either a random or ordered bireactant system. Sets of parameters necessary for these fits are given.  相似文献   

15.
We studied the extracellular [HCOabstract (3) (-)] dependence of two renal clones of the electrogenic Na/HCO(3) cotransporter (NBC) heterologously expressed in Xenopus oocytes. We used microelectrodes to measure the change in membrane potential (DeltaV(m)) elicited by the NBC cloned from the kidney of the salamander Ambystoma tigrinum (akNBC) and by the NBC cloned from the kidney of rat (rkNBC). We used a two-electrode voltage clamp to measure the change in current (DeltaI) elicited by rkNBC. Briefly exposing an NBC-expressing oocyte to HCOabstract (3 )(-)/CO(2) (0.33-99 mM HCOabstract (3)(-), pH(o) 7.5) elicited an immediate, DIDS (4, 4-diisothiocyanatostilbene-2,2-disulfonic acid)-sensitive and Na(+)-dependent hyperpolarization (or outward current). In DeltaV(m) experiments, the apparent K(m ) for HCOabstract (3)(-) of akNBC (10. 6 mM) and rkNBC (10.8 mM) were similar. However, under voltage-clamp conditions, the apparent K(m) for HCOabstract (3)(-) of rkNBC was less (6.5 mM). Because it has been reported that SOabstract (3)(=)/HSO abstract (3)(-) stimulates Na/HCO(3 ) cotransport in renal membrane vesicles (a result that supports the existence of a COabstract (3)(=) binding site with which SOabstract (3)(=) interacts), we examined the effect of SOabstract (3)(=)/HSO abstract (3)(-) on rkNBC. In voltage-clamp studies, we found that neither 33 mM SOabstract (4)(=) nor 33 mM SOabstract (3) (=)/HSOabstract (3)(-) substantially affects the apparent K(m) for HCO abstract (3)(-). We also used microelectrodes to monitor intracellular pH (pH(i)) while exposing rkNBC-expressing oocytes to 3.3 mM HCOabstract (3 )(-)/0.5% CO(2). We found that SO abstract (3)(=)/HSOabstract (3 )(-) did not significantly affect the DIDS-sensitive component of the pH(i) recovery from the initial CO(2 )-induced acidification. We also monitored the rkNBC current while simultaneously varying [CO(2)](o), pH(o), and [COabstract (3)(=)](o) at a fixed [HCOabstract (3)(-)](o) of 33 mM. A Michaelis-Menten equation poorly fitted the data expressed as current versus [COabstract (3)(=)](o ). However, a pH titration curve nicely fitted the data expressed as current versus pH(o). Thus, rkNBC expressed in Xenopus oocytes does not appear to interact with SOabstract (3 )(=), HSOabstract (3)(-), or COabstract (3)(=).  相似文献   

16.
The erythro form of the lignin model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol (1) was oxidized with laccase/ABTS, lead(IV) tetraacetate (LTA), lignin peroxidase/H2O2, cerium(IV) ammonium nitrate (CAN) and Fenton's reagent. The product profiles obtained with the different oxidants were compared after separation, identification and quantification of the products using HPLC, UV-diode array detector and electrospray ionization mass spectrometry in positive ionization mode. The oxidants generated different product profiles that reflected their different properties. Oxidation with laccase/ABTS resulted almost exclusively in formation of 1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)-1-propanone (2). Oxidation with LTA resulted in more 3,4-dimethoxybenzaldehyde (3) than ketone 2. Lignin peroxidase and CAN gave similar product profiles and aldehyde 3 was the predominant product (only small amounts of ketone 2 were formed). Oxidation with Fenton's reagent resulted in the formation of more aldehyde 3 than ketone 2 but the yields were very low. CAN served as an excellent model for the lignin peroxidase-catalyzed oxidation, while the laccase-mediator system, LTA and Fenton's reagent provided distinctly different product profiles. Erythro-1-(3,4-dimethoxyphenyl)-1,2,3-propanetriol was present among the products obtained on oxidation with LTA, lignin peroxidase, CAN and Fenton's reagent. The differences in redox potential between the oxidants afford an explanation of the diverse product patterns but other factors may also be of importance. The reactions leading to cleavage of the β-ether bond with formation of 1-(3,4-dimethoxyphenyl)-1,2,3-propanetriol (veratrylglycerol) were found to proceed without affecting the configuration at the β-carbon atom.  相似文献   

17.
The synthesis and calcimimetic activities of two new families of compounds are described. The most active derivatives of the first family, N(2)-(2-chloro-(or 4-fluoro-)benzyl)-N(1)-(1-(1-naphthyl)ethyl)-3-phenylpropane-1,2-diamine (4b and 4d, respectively, tested at 10 microM) produced 98+/-6% and 95+/-4%, respectively, of the maximal stimulation of [(3)H]inositol phosphates production obtained by 10mM Ca(2+) in CHO cells expressing the rat calcium sensing receptor (CaSR). The second family of calcimimetics was obtained by conformationally restraining the compounds of type 4 to provide the 2-aminomethyl derivatives 5. One of these compounds, (R)-2-[N-(1-(1-naphthyl)ethyl)aminomethyl]indole ((R)-5a, calindol), displayed improved calcimimetic activity compared to 4b and 4d as well as stereoselectivity. In the presence of 2mM Ca(2+), calindol stimulated [(3)H]inositol phosphates accumulation with an EC(50) of 1.0+/-0.1 or 0.31+/-0.05 microM in cells expressing the rat or the human CaSR, respectively. The calcimimetic activities of these novel compounds were shown to be due to a specific interaction with the CaSR.  相似文献   

18.
Syntheses of trans-(1R,2R) and cis-(1S,2R)-1-amino-2-indanol (AI) were accomplished by a series of enantioselective enzymatic reactions using lipase and transaminase (TA). Lipase catalysed enantioselective hydrolysis of 2-acetoxyindanone was employed to prepare (R)-2-hydroxy indanone (HI). trans-AI (5 mM) (de > 98%) was produced from 20 mM (R)-2- HI using omega-TA and 50 mM (S)-1-aminoindan as an amino donor in water-saturated ethyl acetate. For the production of cis-AI, the diastereomeric (2R)-AI was synthesized from (R)-2-HI using reductive amination, and the kinetic resolution was performed with omega-TA. The enantioselectivity of omega-TA for (2R)-AI was increased to 22.1 in the presence of 5% gamma-cyclodextrin. cis-AI (15.4 mM) (96% de) was obtained from 40 mM (2R)-AI using 30 mM pyruvate and omega-TA (25 mg) in 10 mL of 100 mM phosphate buffer (pH 7.0).  相似文献   

19.
Five new 1,3,5-triphenyl-2-pyrazolines were synthesised by reacting 1,3-diphenyl-2-propene-1-one with phenyl hydrazine hydrochloride and another five new 3-(2'-hydroxy naphthalen-1'-yl)-1,5-diphenyl-2-pyrazolines were synthesised by reacting 1-(2'-hydroxynaphthyl)-3-phenyl-2-propene-1-one with phenyl hydrazine hydrochloride. The structures of the compounds were proved by means of their IR, (1)H NMR spectroscopic data, and microanalyses. The antidepressant activity of these compounds was evaluated by the 'Porsolt behavioural despair test' on Swiss-Webster mice.1-Phenyl-3-(2'-hydroxyphenyl)-5-(4'-dimethylaminophenyl)-2-pyrazoline, 5-(4'-dimethylaminophenyl)-1,3-diphenyl-2-pyrazoline, 1-phenyl-3-(2'-hydroxynaphthalen-1'-yl)-5-(3',4',5'-trimethoxyphenyl)-2-pyrazoline, 1-phenyl-3-(4'-methylphenyl)-5-(4'-dimethylaminophenyl)-2-pyrazoline and 1-phenyl-3-(4'-bromophenyl)-5-(4'-dimethyl amino phenyl)-2-pyrazoline reduced immobility times 25.63-59.25% at 100mg/kg dose level. In addition, it was found that the compounds possessing electron-releasing groups such as dimethyl amino, methoxy and hydroxyl substituents, on both the aromatic rings at positions 3 and 5 of pyrazolines, considerably enhanced the antidepressant activity when compared to the pyrazolines having no substituents on the phenyl rings.  相似文献   

20.
We have investigated the genotoxic effects of 1-(2-hydroxyethyl)-1-nitrosourea (HENU). We have chosen this agent because of its demonstrated ability to produce N7-(2-hydroxyethyl) guanine (N7-HOEtG) and O6-(2-hydroxyethyl) 2′-deoxyguanosine (O6-HOEtdG); two of the DNA alkylation products produced by 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU). For these studies, we have used the Big Blue Rat-2 cell line that contains a lambda/lacI shuttle vector. Treatment of these cells with HENU produced a dose dependent increase in the levels of N7-HOEtG and O6-HOEtdG as quantified by HPLC with electrochemical detection. Treatment of Big Blue Rat-2 cells with either 0, 1 or 5 mM HENU resulted in mutation frequencies of 7.2±2.2×10−5, 45.2±2.9×10−5 and 120.3±24.4×10−5, respectively. Comparison of the mutation frequencies demonstrates that 1 and 5 mM HENU treatments have increased the mutation frequency by 6- and 16-fold, respectively. This increase in mutation frequency was statistically significant (P<0.001). Sequence analysis of HENU-induced mutations have revealed primarily G:C→A:T transitions (52%) and a significant number of A:T→T:A transversions (16%). We propose that the observed G:C→A:T transitions are produced by the DNA alkylation product O6-HOEtdG. These results suggest that the formation of O6-HOEtdG by BCNU treatment contributes to its observed mutagenic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号