首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A quantitative analysis of the 14C-labelled assimilate suppliedby the expanded leaves on the primary shoot to growing leaves,stem, lateral shoots (branches or stolons) and roots in redand white clover was conducted during vegetative growth. Stem growth of the primary shoot was inhibited in both cloversand utilized no energy resources. The growing leaves at theprimary shoot apex of white clover imported 4 per cent of theshoot's assimilate compared with 10 per cent in red clover.At the basal end of the primary shoot, the tap root of whiteclover imported 16 per cent of the shoot's assimilate comparedwith 22 per cent in red clover. Branches in red clover and stolonsin white clover were by far the largest sinks for primary shootassimilate, importing 39 per cent and 63 per cent of the labelledassimilate, respectively. Analyses of the translocation of assimilate from individualprimary shoot leaves demonstrated that in both clovers olderleaves exported more of their assimilate to branches or stolons,whereas younger leaves exported more of their assimilate toroots, and possibly in white clover, to growing leaves at thetip of the shoot. Of the labelled assimilate exported to branchesor stolons, each primary shoot leaf exported preferentiallyto the branch or stolon in its own axil, but in addition exportedsubstantial quantities of assimilate to all other axillary shoots,particularly those arising from basal axils where the subtendingleaf had died. Trifolium repens, Trifolium pratense, red clover, white clover, assimilate partitioning, perennation  相似文献   

2.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

3.
The aim of this study was to test the effect of oxygen partialpressure as a possible limiting factor of nitrogen fixationfollowing defoliation. The response of nitrogenase activity(C2H2-reduction) of defoliated and undefoliated white and redclover plants (Trifolium repens L. and Trifolium pratense L.)to either 19 kPa oxygen or 55 kPa oxygen was investigated. Priorto defoliation, white clover plants were grown for five weeksin a growth chamber, and red clover plants for 7 or 11 weeksin a glasshouse. The results included measurements of 16N2-uptake. Increasing oxygen partial pressure from 19 to 55 kPa severelyrestricted nitrogenase activity of undefoliated white cloverplants; however, 2 h after complete defoliation, the same treatmentcaused a significant increase. A fivefold increase in nitrogenaseactivity upon exposure to the elevated oxygen partial pressurewas found at the end of a 24 h period. This beneficial effectdecreased gradually from 1 to 5 d after defoliation. The responseof recently defoliated red clover plants to 55 kPa oxygen partialpressure was similar to that of white clover, independentlyof plant age. The gradual recovery of nitrogenase activity duringthree weeks of regrowth was associated with a simultaneous changein the response to increased oxygen partial pressure, leadingagain to the response of undefoliated plants. These data suggested that lack of oxygen at the site of nitrogenfixation, resulting from a dramatic increase in oxygen-diffusionresistance, is the main factor limiting nitrogenase activityfollowing defoliation. Trifolium repens L., Trifolium pratense L., white clover, red clover, defoliation, regrowth, nodules, nitrogen fixation, nitrogenase activity, oxygen limitation  相似文献   

4.
The growth of white clover (Trifolium repens L.) in conditionstypical of April in Southern England (8 °C day/4 °Cnight, 12 h photoperiod of 90 J m–2 s–1 visibleradiation) was extremely slow, whether the plants were dependentfor nitrogen on fixation by their root nodules or were suppliedwith abundant nitrate; although growth was slower in the nodulatedplants. The reasons for slow growth were a large root: shootratio and a small leaf area, particularly in the nodulated plants,and a low photosynthetic rate in all plants. The probable effectsof these characteristics on the growth of white clover withgrasses in mixed pastures are discussed. Trifolium repens L, white clover, low temperature, leaf area, photosynthetic rate, nitrogen supply, growth  相似文献   

5.
White clover (Trifolium repens L.) plants were grown from seedin perlite, inoculated with effective rhizobia and exposed tothe same ‘concentration x days’ of 15N-labellednitrate in four contrasting patterns of doses. Acetylene reductionwas measured at intervals using an open, continuous-flow sytem.Mean dry weight per nodule and rates of acetylene reductionfell rapidly (2–3 d) during periods of exposure to highnitrate concentrations (> 7 mM N) and rose again, equallyrapidly, when nitrate was withdrawn or substantially reduced.The fall in mean dry weight per nodule (50–66 per cent)was almost certainly too large to be accounted for by loss ofsoluble or storage carbohydrate only. No new nodules were formedduring periods of high nitrate availability. When nitrate wassupplied continuously at a moderate concentration (5.7 mM N)nodule numbers stabilised although existing nodules increasedin dry weight by almost four-fold over the 30 d measurementperiod. Treatment had no effect on the percentage nitrogen in planttissues although there were large differences in the proportionsderived from nitrate and N2-fixation. Plants exposed continuouslyor frequently to small doses of nitrate took up more nitrate,and hence relied less heavily on N2-fixation, than those exposedto larger doses less often. Increased reliance on nitrate broughtwith it increased total dry weight and shoot: root ratios. Possiblemechanisms involved in bringing about these differences in nitrogennutrition and growth are discussed. White clover, Trifolium repens, nitrate, N2-fixation, nodule, acetylene reduction, 15N  相似文献   

6.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and harvested at intervals over and88 d growht period. The swards received a nutrient solutiondaily, which was either High (220 mg l1) or Low (10 mgl–1) in nitrate N. The nitrate was labelled with the 15Nisotope. An acetylene reduction assay was carried out on eachsward just prior to harvest. Rates of acetylene reduction agreed qualitatively with the l5Nanalyses but absolute values did not match (assuming a 4:1 C2H4:N2ratio) and errors in the acetylene assay are discussed. In theLow-N swards clover relied almost entirely on symbioticallyfixed N2, fixing more than ten times as much as the High-N cloverplants. In the Low-N treatment the grass was N-deficient despiteobtaining much more nitrate per unit root dry weight than clover.In the High-N swards, however, clover took up more nitrate perunit root weight than grass. The High-N clover plants also fixedsome N2 and maintained a higher total-N content than grass throughoutthe period. There was no evidence of transfer of symbioticallyfixed N from the clover to the grass in either treatment. Trifolium repens, Lolium perenne, nitrate, nitrogen fixation, 15N, acetylene reduction  相似文献   

7.
The fourth fully expanded leaf on the main stolon of white cloverplants was exposed to 14CO2. Thereafter, quantitative and fractionalanalysis of the partitioning, storage and remobilization afterdefoliation of the 14C labelled assimilate was sequentiallyconducted over a 2- to 3-week period. In undefoliated plants, most 14C reached its final destinationwithin 24 h of feeding. Forty percent of assimilated 14C waslost through respiration, while the rest was exported, predominantlyto meristems, but also to roots, stolons and leaves. The 14Cinitially translocated to meristems was subsequently recoveredin stolon and leaf tissue as the plants matured. Approximately 10% of assimilated 14C was invested into long-termstorage in roots and stolons. These reserves were remobilizedafter both partial and total defoliation, and a portion of theremobilized 14C was incorporated into new growth, Partly defoliatedplants regrew more rapidly than totally defoliated plants, butmore 14C reserve depletion took place in the totally defoliatedtreatment. Reserve depletion took place from both stolons androots, but stolon reserves were preferentially utilized. Bothhigh and low molecular weight storage compounds were involved. Trifolium repens, white clover, assimilate partitioning, storage, remobilization, defoliation  相似文献   

8.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

9.
Growth and N-accumulation rates in leaves, stolons and rootsof individual white clover plants were studied in three experimentsusing two methods. In a growth chamber experiment, the relativedifferences between tissues were found to be almost constantfor a wide range of clover plant sizes. The stolon dry matter(DM) production was 56% and the root DM production 40% of theDM production in leaves. The N yield of stolons was 30% whileN yield in roots was 34% of N yield in leaves. The effect ofN application on these relations was investigated in a glasshouseexperiment. Application of N reduced the root:shoot N ratiofrom 0.50 to 0.28, whereas the stolon+root:leaf N ratio (i.e.for abovevs.below cutting-height tissues) was only reduced from0.97 to 0.80. In a field trial with two contrasting N regimes,growth and N accumulation were measured on individual cloverplants. Dinitrogen fixation was estimated by15N isotope dilutionbased on analysis of leaves-only or by including stolons. Usingleaves-only did not affect the calculation of percentage ofclover N derived from N2fixation (% Ndfa) since the15N enrichmentwas found to be uniform in all parts of the clover. A correctionfactor of 1.7 to account for N in below cutting-height tissueis suggested when N2fixation in white clover is estimated byharvesting the leaves only.Copyright 1997 Annals of Botany Company Leaves; N accumulation; N2fixation; 15N isotope dilution; pastures; roots; root/shoot ratio; stolons; Trifolium repensL.; white clover  相似文献   

10.
White clover (Trifolium repens L.) was grown in controlled environmentsto determine the distinct effects of root and shoot temperatureon the accumulation of total and fixed (15 N dilution) nitrogenat two levels of nitrate (10 and 75 mM). Nitrogen fixation(BNF) showed a positive response to higher shoot temperature(23 vs. 13 C day temperature), irrespective of whether or notroot temperature was increased in parallel. Low root temperature(5 C) caused a marked reduction in the accumulation of totalnitrogen at both nitrate levels, and led to a lower proportionof N derived from BNF. The temperature response of BNF was attributedfor the major part to an adaptation to the demand for fixedN. It is therefore concluded that BNF is not primarily responsiblefor the reduced clover growth at low temperatures. White clover, Trifolium repens L., temperature, nitrogen fixation, nitrate, root, shoot  相似文献   

11.
Established, nodulated white clover plants were transferredto eight tanks of a flowing culture apparatus with solutiontemperatures of 5, 11, 17, and 25 ?C (two tanks per temperature).Shoot temperature and light environment were common to all plants.After 7 d, (10 mmol m–3) was continuouslysupplied to one tank at each temperature while in the remainingfour tanks (one at each temperature) the plants were completelydependent on nodule N2-fixation. Plants were randomly selected at intervals during the following14 d period in order to measure root and nodule respirationand acetylene reduction activity (ARA) in a flow-through systemset at the adapted root temperature. Additional plants wereassayed for in vitro nitrate reductase activity in leaves, roots,and nodules. Apparent nitrogenase activity (ARA) and respiration associatedwith it were each markedly affected by temperature in two ways;(1) Activity per unit weight of nodule was reduced at lowertemperatures; (2) Development of the plant, and thus also nodulemass, was restricted at lower temperatures which, in turn, restrictedtotal nodule activity per plant. The presence of nitrate significantly reduced ARA of nodules,particularly at higher temperatures. However, significant discrepancieswere found when N2-fixation rates, estimated from the acetylenereduction assay, were compared with N2-fixation rates calculatedfrom curves fitted to N accumulation data (minus the rate of uptake in the case of nitrate-treated plants). Carbon use efficiency (CO2 respired per C2H4 produced) was notsignificantly affected by temperature or the presence of nitrate. Nitrate reductase activity (NRA) developed in all plant partsat the three highest temperatures, but not at 5 ?C. We calculatethat leaf NRA may account for 82, 75, and 68% of total nitratereduction at 11, 17, and 25 ?C respectively. Key words: Trifolium repens, white clover, N2 fixation, root temperature, acetylene reduction assay, nitrate, nitrate reductase  相似文献   

12.
PATE  J. S. 《Annals of botany》1966,30(1):93-109
In Pisum arvense, the amides and amino-acids normally suppliedto the shoot in the transpiration stream transfer carbon toprotein largely throught the amino-acids, aspartic acid (+asparagine),glutarnic acid (+glutamine), threonine, lysine, arginine, andproline. Carbon from carbon dioxide enters the protein of photosynthesizingtissues through an essentially complementary set of amino-acidsincluding glycine, alanine, serine, valine, and the aromaticamino-acids tyrosine, phenylalnine, and histidine. Young tissuesof the shoot synthesize certain amino-acids de novo by metabolismof sugars supplied from photosynthesizing leaves. Each mature leaf on a shoot contributes carbon to current synthesisof protein at the shoot apex. Sucrose accounts for more than90 per cent of the labelled carbon leaving any age of leaf whichhas been fed with 14CO2. Upper leaves supply labelled assimilatesdirectly to the shoot apex, and the radiocarbon from these assimilatesis subsequently incorporated into a wide range of amino-acidunits of protein. The majority of the labelled assimilates exportedfrom a lower leaf move downwards to the root and nodules and,in consequence, the amino-acids and amides associated with rootmetabolism are strongly represented among the compounds eventuallylabelled in the apical region of the shoot.  相似文献   

13.
Nodule function and protein synthesis were studied in defoliationstressed white clover plants. Uncut control plants (C) werecompared with plants from two defoliation treatments: (1) continuousdefoliation (CD) where all leaves and petioles were removedeach day; and (2) defoliated/recovered (DR) where, after removalof all leaves and petioles, new leaves were then allowed toregrow. After a single defoliation N2 fixation (acetylene reductionactivity) and nitrogenase-linked respiration declined by morethan 80% within 3 h and by nearly 100% by 24 h. DR plants beganto fix nitrogen again at a very low level 3 d later and thereafterrose to control levels by 15 d. Continuously defoliated plantsnever recovered N2 fixation capacity. Nodule protein complementwas assessed by polyacrylamide gel electrophoresis. Major changesoccurred in buffer soluble protein band patterns by 6 d in CDplants, but few changes were evident in SDS soluble proteins.By 9 and 14 d significant disruption of all proteins was evident.The prominent host plant protein, leghaemoglobin (Lb) had disappearedby 14 d. In DR plants the intensity of staining was reducedbut no major changes in band patterns were evident and by 21d nodules were rejuvenated. [35S]-labelled methionine was incorporated into nodule proteinsfrom all treatments throughout the experiment. However, continuousdefoliation caused increasing variability between replicatesin the labelled band patterns. By 21 d CD, much of the labelledprotein was present as amorphous low Mr material which suggestseither disruption of the protein synthesizing machinery or rapidhydrolysis by proteolytic enzymes. Surprisingly [35S]-methionine was never found in Lb from nodulesof any treatment. It is possible that white clover Lb does notcontain any methionine residues or that no synthesis of Lb occurred. Key words: Trifolium repens, white clover, defoliation, protein synthesis, nodules  相似文献   

14.
Single plants of white clover, grown in a controlled environmentand dependent for nitrogen on fixation in their root nodules,were defoliated once by removing approximately half their shoottissue. Their regrowth was compared with the growth of comparableundefoliated plants. Two similar experiments were carried out:in the first, plants were defoliated at 2.5 g, and in the secondat 1.2 g total plant d. wt. Defoliation reduced rate of N2 fixation by > 70 per cent,rate of photosynthesis by 83–96 per cent, and rate ofplant respiration by 30–40 per cent. Nodule weights initiallydeclined following defoliation as a result of loss of carbohydratesand other unidentified components. No immediate shedding ofnodules was observed but nodules on the most severely defoliatedplants exhibited accelerated senescence. The original rates of N2 fixation were re-attained after 5–6or 9 d regrowth, with increase in plant size at defoliation.In general, the rate of recovery of N2 fixation was relatedto the re-establishment and increase of the plant's photosyntheticcapacity. Throughout the growth of both defoliated and undefoliatedplants nodule respiration (metabolism) accounted for at least23 ± 2 per cent of gross photosynthesis. The unit ‘cost’of fixing N2 in root nodules, in terms of photosynthate, appearedto be unaffected by defoliation, except perhaps for plants veryrecently defoliated. Similarly, the percentage nitrogen contentsof shoot, root and nodules of defoliated plants became adaptedwithin a few days to those characteristic of undefoliated plants. Trifolium repens, white clover, N2 fixation, defoliation, photosynthesis, respiration  相似文献   

15.
White clover (Trifolium repens L.) and Perennial ryegrass (Loliumperenne L.) plants were grown, in Perlite, in simulated swardsas either monocultures or mixtures of equal plant numbers. Theywere supplied with a nutrient solution either high (220 µgg–1) or low (40 µg g–1) in 15N-labelled nitrateand grown to ceiling yield at either high (20°C day/15°Cnight) or low (10°C day/8°C night) temperature. Temperature had little effect on the maximum rates of grosscanopy photosynthesis which were similar in High-N grass andHigh-N and Low-N clover monocultures. However these maxima werereached more slowly in clover than grass, and more slowly atlow rather than high temperature. Nitrogen supply increasedphotosynthesis in grass but not in clover. Clover had higherN contents than grass in all four treatments, although in anygiven treatment its N content was lower, and contribution ofN2-fixation relative to nitrate uptake higher, in mixture thanin monoculture. Conversely, grass had higher N contents in mixturethan monoculture, because more nitrate was available per plantand not because of transfer of biologically fixed N from clover. Under Low-N, clover outyielded grass in mixture, particularlyat high temperature. The grass plants in the Low-N mixtureshad higher N contents and higher SLA, LAR and shoot: root ratiosthan those in monoculture. It is proposed that competition forlight is the cause of the low relative yield and negative aggressivityof grass in these swards. Under High-N, grass outyielded cloverin monoculture and mixture, at both temperatures but particularlyat low temperature when grass had a high aggressivity. Nitrogenand yield component analyses shed no light on clover's apparentlylow competitive ability and evidence is drawn from the previouspaper to demonstrate that grass grew faster than clover onlyas spaced individuals during non-com petitive growth. The relativemerits of measures of competitive ability based on final harvestdata and physiological data taken over a growth period are discussed. Trifolium repens L., white clover, Lolium perenne, perennial ryegrass, competition, temperature, nitrogen  相似文献   

16.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

17.
Clonal plants of white clover (Trifolium repens L ), whollydependent on N2 fixation, were grown for 6 weeks in controlledenvironments providing either (C680 regime) 23/18 °C day/nighttemperatures and a CO2, concentration of 680 µmol mol–1,or (C340 regime) 20/15 °C day/night temperatures and a CO2,concentration of 340 µmol mol–1 During the firsthalf of the experimental period the C680 plants grew fasterthan their C340 counterparts so that by week 3 they were twicethe weight this 2 1 superiority in weight persisted until theend of the experiment The faster initial growth of the C680plants was based on an approx 70 % increase in leaf numbersand an approx 30 % increase in their individual area Initially,specific leaf area (cm2 g–1 leaf) was lower in C680 thanin C340 leaves but became similar in the latter half of theexperiment Shoot organ weights, including petioles and stolons,reflected the C680 plant's better growth in terms of photosyntheticsurface Throughout, C680 plants invested less of their weightin root than C340 plants and this disparity increased with timeAcetylene reduction assays showed that nitrogenase activityper unit nodule weight was the same in both C680 and C340 plantsBoth groups of plants invested about the same fraction of totalweight in nodules Nitrogen contents of plant tissues were similarirrespective of growth regime, but C680 expanded leaves containedslightly less nitrogen and their stolons slightly more nitrogenthan their C340 counterparts However, C680 leaves containedmore non-structural carbohydrate Young, unshaded C680 leavespossessed larger palisade cells, packed more tightly withinthe leaf, than equivalent C340 leaves The reason for the C680regime's loss of superiority in relative growth rate duringthe second half of the experiment was not clear, but more accumulationof non-structural carbohydrate, constriction of root growthand increased self-shading appear to be the most likely causes Trifolium repens, white clover, elevated CO2, elevated temperature, growth, N2 fixation, leaf structure  相似文献   

18.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and their growth and carbon economyexamined. The swards received a nutrient solution daily, whichcontained either High (220 mg l1) or Low (10 mg l–1)nitrate N. Rates of canopy photosynthesis and respiration, and final drymatter yields were similar in the two treatments although theproportions of grass and clover differed greatly. The Low-Nswards were made up largely of clover. The grass plants in theseswards had high root: shoot ratios and low relative photosyntheticrates – both signs of N deficiency – and were clearlyunable to compete with the vigorously growing Low-N clover plants.These had higher relative growth rates and dry matter yieldsthan their High-N counterparts. In the High-N swards clovercontributed around 50 per cent to the sward dry weight throughoutthe measurement period despite having a smaller proportion ofits dry weight in photosynthetic tissue (laminae) than grassover much of it. The latter was compensated for, initially bya higher specific leaf area than grass, and later by a higherphotosynthetic rate per unit leaf weight. The results are discussedin relation to observed declines in the clover content of swardsafter the addition of nitrogen fertilizer in the field. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, nitrogen, photosynthesis, carbon balance  相似文献   

19.
The seasonal dynamics of symbiotic fixation, distribution andfate of nitrogen (N) were studied on two successive crops ofred clover (Trifolium pratenseL.) grown outdoors in soil containersunder the Mediterranean climate of southern France. Nitrogenaseactivity was followed throughout the growing season using acetylene(C2H2) reduction assays. The distribution and transfer of symbioticallyfixed N were followed by periodic measurements of15N distributionin plants after exposure of the root systems to labelled dinitrogen(15N2). In both years there were two peaks of nitrogenase activity,one in spring and one in late summer, separated by a sharp decreaseduring the flowering period. Over the entire growth cycle, symbioticallyfixed N accounted for 61 to 96% of the total plant N. Once weekafter incorporation, 60 to 90% of N derived from the atmospherewas recovered in the aerial parts of the plants. More than 50%of this was in the leaves, but there were differences in distributionaccording to the stage of development. The maximum percentage(20–28%) recovered from nodulated roots occurred in May–June,during maximum growth of the vegetative organs, and in September.Above-ground symbiotically fixed N was highly mobile with time,moving from the rosette leaves to the leaves attached to theelongated stems and then to the seeds, where 25 to 50% of Nfixed in May and June was recovered in September. Because of:(1) the high turnover rate of leaves; and (2) the relativelyhigh N content of dead leaves, as much as 50% of the symbioticallyfixed N in a year was potentially available to the soil micro-organismsas litter. The maximum transfer was in spring and winter. Ofthe remainder, 20 to 35% was recovered in living plant partsduring regrowth in March of the second year. Transfers to andfrom the root system were less pronounced, but significant decreasesin N content of the roots occurred early in the second yearjust after foliage regrowth was initiated. It is concluded that,because of its high foliage productivity and turnover rate,and high yield of symbiotically fixed N, red clover is a goodcandidate to provide substantial amounts of N to the soil throughoutthe year and therefore restore N fertility. Red clover; Trifolium pratenseL.; forage legumes; labelled dinitrogen (15N2) reduction; acetylene reduction; nitrogen fixation; nitrogen distribution; nitrogen transfer  相似文献   

20.
Microswards of white clover (Trifolium repens L.) were grownin controlled environments at 10/7, 18/13 and 26/21 °C day/nighttemperatures. The vertical distribution of leaves of differentages and their rates of 14CO2-uptake in situ were studied. Extending petioles carried the laminae of young leaves throughthe existing foliage. A final position was reached within 1/4to 1/3 of the time between unfolding and death. Newly unfoldedleaves had higher rates of 14CO2-uptake per leaf area than olderones at the same height in the canopy. At higher temperatures,the decrease with age was faster. However, the light-photosynthesisresponse of leaves which were removed from different heightsin the canopy varied much less with leaf age than did the ratesof 14CO2-uptake in situ. The comparison of the rates of 14CO2-uptake in situ with thelight-photosynthesis response curves suggests that young leavesreceive more light than older ones at the same height in thecanopy. This would imply that young white clover leaves havethe ability to reach canopy positions having a favourable lightenvironment. This ability may improve the chances of survivalof white clover in competition with other species. Trifolium repens L., white clover, photosynthesis, canopy, leaf age, 14CO2-uptake, ecotypes, temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号