首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M. J. Jaffe  A. W. Galston 《Planta》1967,77(2):135-141
Summary The rapid nyctinastic movements of Albizzia julibrissin pinnules are under the control of phytochrome. When given prior to a dark period, red light facilitates and far-red light inhibits pinnule closure in the dark. These light effects are mutually photoreversible. The opening reaction of the pinnules following a dark period is mediated mainly by blue light. The nyctinastic closure response is accompanied by an increased rate of electrolyte efflux from the cut pinna base. This observation, coupled with the fact that the rapid nyctinastic movement is not affected by actinomycin D, supports the view that phytochrome control of the sleep movement is not mediated through effects on RNA metabolism, but rather through changes in membrane permeability.  相似文献   

2.
Tanada T 《Plant physiology》1982,70(3):901-904
The nyctinastic closing of Albizzia julibrissin pinnules is delayed by exposure to far-red radiation at 710 and 730 nanometers, with the former more effective than the latter. Far-red radiation at 750 and 770 nanometers has no effect on the process. Red light at 660 nanometers, which by itself has no effect, delayed closure when given before or simultaneously with far-red radiation at 750 or 770 nanometers. Low doses of green light, on the other hand, prevented all far-red radiations from delaying closure when given together with one of them. Effectiveness peaks at 550 nanometers. Green light by itself has no effect on the closing process.

From these and previous results, it is concluded that phytochrome is one of two photoreceptors in the process, that the other photoreceptor is an unknown pigment, and that the unknown photoreceptor requires some prior effect of the far-red-absorbing form of phytochrome before its action. Predictions are made of some of the properties of the unidentified pigment.

  相似文献   

3.
Prolonged irradiation during appropriate parts of the diurnal cycle promotes the opening of Albizzia julibrissin leaflets. Leaflets also open without illumination, but such opening starts later and is slower and less complete. Opening in the dark is accompanied by lower potassium efflux from dorsal pulvinule motor cells but equal or greater potassium movement into ventral motor cells than occurs during opening in the light. Far red-absorbing phytochrome inhibits opening in the dark, indicating that its action is similar during endogenously controlled opening and nyctinastic closure; i.e., a high far redabsorbing phytochrome level is associated with low potassium content in ventral motor cells, high potassium content in dorsal motor cells, and a small angle between leaflets.  相似文献   

4.
Tanada T 《Plant physiology》1982,70(1):320-321
Boron has been found to be necessary for the delaying action of 710 nanometer irradiation on the nyctinastic closing of Albizzia julibrissin pinnules. It is effective only over a narrow micromolar range. In contrast, the delaying action of 470 nanometer irradiation on closure is inhibited by boron. The effect of boron on leaflet closing occurs rapidly. Boron is suggested to be involved in a phytochrome action that precedes and is required for a delaying effect on pinnule closing subsequently induced by an unknown far-red absorbing pigment.  相似文献   

5.
The fact that far-red pretreatment slows the closing response of Albizzia julibrissin pinnules to darkness was used to locate the photoreceptor region for the role of phytochrome in nyctinasty, and to determine whether the effect is localized or translocated. Illumination of pinnule tissue alone induced no response, while illumination of an area as narrow as 1 mm, including only the tertiary pulvini and adjacent portions of rachilla and pinnules, was sufficient for a full response. This suggests that the pulvini themselves, the sites of the response, act as photoreceptors. In experiments with various shielding devices, pinnules on the same rachilla responded independently to local illumination, suggesting the absence of any translocatable effects.  相似文献   

6.
Nyctinastic closure of Albizzia julibrissin pinnules is inhibited by 5 × 10?2M ethylenediaminetetraacetic acid. At least two hours of incubation are required for maximum inhibition and destruction of the phytochrome effect. Concentrations of 10?3 to 10?5M naphthaleneacetic acid reduced the nyctinastic closure of pinnules but not the phytochrome response. Similar results were obtained with indoleacetic acid and gibberellic acid. No appreciable differences in pinnule movements could be attributed to pH. Chelation or the inhibition of ion transport resulting in, or caused by, changes in membrane permeability are suggested as possible mechanisms involved in these effects.  相似文献   

7.
In green plants, the large bioelectric changes that photosynthetically active light stimulates make it difficult to observe electrical potential changes related to phytochrome photoconversion. As a first step towards distinguishing between photosynthetic and phytochrome effects, we showed that red light enhances far-red stimulated intracellular potential changes in spinach (Spinacia oleracea) leaf mesophyll cells.

For a dark-adapted leaf, the response to far-red light increased during the first 10 to 30 exposures of 2.5 minutes, after which it was constant. The intracellular potential depolarized by an average of 0.3 millivolts during each 2.5-minute far-red light period, and returned to the resting value during each subsequent dark period. Continuous supplementary red light (at 1-5% of the fluence rate of the far-red light that stimulated the depolarizations) increased the response to far-red 2- to 3-fold. Supplementary red light did not amplify the response to alternating 702 nanometers light and dark periods. The Emerson enhancement effect thus does not seem to explain amplification of the response to 730 nanometers light by supplementary red light. This does not prove that photosynthetic pigments are not involved in some other way.

  相似文献   

8.
Saxe H  Satter RL 《Plant physiology》1979,64(5):905-907
Vanadate (Na3VO4) selectively and reversibly affects the rhythmic movement of Albizzia julibrissin leaflets. Leaflets floated on 1 millimolar vanadate open at the same rate or more rapidly than controls, but closure is inhibited. After 6 to 24 hours incubation, the inhibition can be reversed by a 24-to 48-hour period on water or control buffer. Recovery is complete in light-dark cycles, and it is almost complete under free-running conditions (prolonged darkness). Leaflets floated on 10 millimolar vanadate do not open in darkness, but they open at a reduced rate in light. Concentrations of 100 micromolar or less are ineffective.  相似文献   

9.
In Vivo Properties of Membrane-bound Phytochrome   总被引:9,自引:7,他引:2       下载免费PDF全文
After a 3-minute irradiation with red light, which saturates the phototransformation from the red light-absorbing form of phytochrome to the far red light absorbing form of phytochrome, about 40% of the phytochrome extractable from hooks of etiolated squash seedlings (Cucurbita pepo L. cv. Black Beauty) can be pelleted as Pfr at 17,000g after 30 minutes. Dark controls yield only 2 to 4% pelletable phytochrome in the form Pr. If a dark period intervenes between red irradiation and extraction, the bound Pfr gradually loses its photoreversibility. The time course for this destruction parallels the time course for phytochrome destruction in vivo following saturating red irradiation. The soluble fraction of phytochrome remains constant. These results suggest that in squash seedlings phytochrome destruction is related exclusively to the fraction which becomes membrane-bound. The induction of phytochrome binding by red light is not completely reversible by far red. In plants given saturating red followed immediately by saturating far red light, 12% of the phytochrome is found in the bound fraction as Pr if the phytochrome extraction is immediate. If a dark period intervenes between red-far red treatment and extraction, the bound phytochrome is released within 2 hours. A model of the binding properties of phytochrome, based on molecular interaction at the membrane is proposed, and possible consequences for the mechanism of action of phytochrome are discussed.  相似文献   

10.
In rice seedlings, elongation of leaf sheaths is suppressed by light stimuli. The response is mediated by two classes of photoreceptors, phytochromes and cryptochromes. However, it remains unclear how these photoreceptors interact in the process. Our recent study using phytochrome mutants and novel cryptochrome RNAi lines revealed that cryptochromes and phytochromes function cooperatively, but independently to reduce active GA contents in seedlings in visible light. Blue light captured by cryptochrome 1 (cry1a and cry1b) induces robust expression of GA 2-oxidase genes (OsGA2ox4-7). In parallel, phytochrome B with auxiliary action of phytochrome A mediates repression of GA 20-oxidase genes (OsGA20ox2 and OsGA20ox4). The independent effects cumulatively reduce active GA contents, leading to a suppression of leaf sheath elongation. These regulatory mechanisms are distinct from phytochrome B function in dicots. We discuss reasons why the distinct system appeared in rice, and advantages of the rice system in early photomorphogenesis.  相似文献   

11.
Prunus persica plants were grown under prolonged exposure to different light treatments to determine the interaction between the blue light (BL) receptor and phytochrome and/or an independent BL response in the photoregulation of shoot and leaf development. Different light conditions were established in growth chambers by changing both the state of phytochrome and the BL photon flux density (PFD) at constant photosynthetically active radiation (PAR). Furthermore, to evaluate the independent action of the BL photoreceptor, increasing amounts of BL photons were added to the light emitted by low-pressure sodium (LPS) lamps without altering irradiance and phytochrome photoequilibrium. Applying the principle of equivalent light action, the observed blue inhibition of shoot elongation, leaf expansion and thickness were clearly related to a specific BL receptor because the state of phytochrome for each treatment was nearly identical. Increasing amounts of blue photons to light emitted from LPS lamps decreased shoot elongation, whereas leaf expansion was negatively affected only at the highest blue level, suggesting a specific fluence dependence response to BL for each organ and tissue. The BL effect was evident in reducing the thickness of all the leaf tissues except for the upper epidermis, which became thicker. This could be the result of an adaptation to protect the underlying photosynthetic apparatus. Other morphological and anatomical responses to the action of the BL receptor were greatly altered when the state of phytochrome changed in the plant tissues. Received: 9 February 1999 / Accepted: 21 July 1999  相似文献   

12.
Summary The mode of phytochrome control of elongation growth was studied in fully-green strawberry (Fragaria x Ananassa Duch.) plants. Petiole growth showed two distinct types of response to light. In one, the end-of-day response, petioles were lengthened by low-intensity far-red irradiation for 1 h immediately following the 8 h photoperiod. The response was little or no greater with prolonged exposure and less when the start of far-red was delayed. It was already evident in the first leaf to emerge after treatment began. With the development of successive leaves a second, photoperiodic, type of response appeared, in which petioles lengthened following only prolonged exposure to red, far-red, mixtures of the two, or tungsten lighting, all at low levels of intensity. As with the inhibition of flowering in previous experiments, irradiation with red light during the second half of the otherwise long dark period gave the greatest response.Abbreviations and Symbols FR far-red light - HIR high irradiance response - R red light - Pr phytochrome in the red light absorbing form - Pfr phytochrome in the far-red light absorbing form - SDP short-day plant - LDP long-day plant - PAR photosynthetically active radiation  相似文献   

13.
The opening of excised Samanea saman pulvini is promoted by prolonged blue or far-red irradiation. Far-red effects are attributed partially but not completely to lowering of the Pfr level. Two hours of continuous or pulsed blue light or pulsed far-red light (total dosage = 2.2 × 1018 quanta per square centimeter in all cases) also phase shifts the rhythm in Samanea while two hours of continuous blue light phase shifts the rhythm in the related plant Albizzia julibrissin. The same pigments appear to regulate opening and rhythmic phase shifting. The blue light-induced phase response curve has smaller advance and delay peaks and differs in shape from the curve induced by brief red light pulses absorbed by phytochrome. The blue absorbing pigment has not been identified, but it does not appear to be phytochrome acting in a photoreversible mode.  相似文献   

14.
The action spectrum for the light-activated destruction of phytochrome in etiolated Avena seedlings has been determined. There are 2 broad maxima, one between 380 and 440 mμ, the other between 600 and 700 mμ. peaking at about 660 mμ. On an incident energy basis, the red region of the spectrum is more efficient than the blue by about one order of magnitude in activating phytochrome disappearance. Both the red absorbing as well as the far-red absorbing forms of phytochrome are destroyed after exposure of Avena seedling to either red or blue light.

From the action spectrum and photoreversibility of pigment loss, we conclude that phytochrome acts as a photoreceptor for the photoactivation of its metabolically-based destruction. We suggest that another pigment might also be associated with the disappearance of phytochrome in oat seedlings exposed to blue light.

  相似文献   

15.
Quantifying Rhythmic Movements of Albizzia julibrissin Pinnules   总被引:2,自引:2,他引:0       下载免费PDF全文
Koukkari WL 《Plant physiology》1973,51(6):1084-1088
The cosinor technique, previously applied to studies of animal rhythms, is used to assess the circadian rhythm in pinnule movement of Albizzia julibrissin. The method provides a quantitative approach for studying rhythm properties of either intact or excised pinnules. Phase shifting in A. julibrissin, as compared to the usually slower phase shifts of various circadian phenomena in the insect, bird, and mammal, occurs within 1 day or two. Rhythm adjustment in the pinnules takes place more rapidly when the lighting regiment is advanced than when it is delayed.  相似文献   

16.
Abstract

Endogenous Rhythms in Mimosa pudica L. Leaf Movements.

The rhythmic movements performed by the leaves of the “Sensitive plant”, Mimosa pudica L., observed by time lapse photography, result of periodical turgor variations taking place in the parenchymatous cells of specialized motor organs. These turgor variations are associated with membrane permeability changes and ionic movements. These leaf movements allow to specify the temporal organization of this plant. Statistical analysis of observed periodicities in leaf movement shows that, in alternating conditions of light and dark (L/D:14/10) three distinct rhythms exist: a circadian rhythm synchronized by the photoperiodic cycle (τ = 24 hrs), and two ultradian rhythms with mean period values 3.8 hrs and 0.5 hrs respectively. In constant conditions from germination (L/L), the leaf behavior is strongly modified, but the three period values are found again (mean period values of 25.1 hrs, 3.5 hrs and 0.6 hrs respectively). The occurence of many rhythms with various periods taking place in the same organ is discussed in reference to observations effected on other biological subjects. Then, it appears that the period value within 2 and 4 hrs may be considered as a characteristic one in plants.  相似文献   

17.
An action spectrum for anthocyanin formation in dark-grown broom sorghum (Sorghum bicolor Moench, cv Acme Broomcorn and cv Sekishokuzairai Fukuyama Broomcorn) seedlings was determined over the wavelength range from 260 to 735 nanometers. The action peaks were at 290, 650, 385, and 480 nanometers in descending order of height. The action of the 290-nanometer peak was not affected by subsequently given far red light, whereas those of the other three action peaks were nullified completely. The nullification of the 385-nanometer peak action by far red light was reversible. When an irradiation at these action peaks was followed by a phytochrome-saturating fluence of red light irradiation, the action of the 290-nanometer peak remained, whereas that of the 385-nanometer peak as well as those of the 650- and 480-nanometer peaks was masked by the action of the second irradiation. These findings suggested that the 290- and 385-nanometer action peaks involved different photoreceptors, the latter being phytochrome. The blue light-absorbing photoreceptor as reported to be a prerequisite for phytochrome action in milo sorghum was not found to exist in the broom sorghums.

The action spectrum deprived of the involvement of phytochrome was determined in the ultraviolet region by irradiating with far red light following monochromatic ultraviolet light. The spectrum had a single intense peak at 290 nanometers and no action at all at wavelengths longer than 350 nanometers.

  相似文献   

18.
Filner B  Klein AO 《Plant physiology》1968,43(10):1587-1596
The phytochrome controlled increase in total protein in the primary leaf pair of etiolated bean (Phaseolus vulgaris var. Black Valentine) seedlings, which occurs during growth in the dark subsequent to a brief illumination, was investigated. Enzymes from the chloroplasts, the mitochondria, and the soluble cytoplasm all increase in total activity after the illumination.

The total protein and the ribulose carboxylase increases are not inhibited by FUdR, an inhibitor of DNA synthesis. Cycloheximide, an inhibitor of protein synthesis, applied at a time when the ribulose carboxylase activity increase has already commenced, blocks further increase. It was concluded that the total protein and the enzyme increases in the leaf are the result of increases in the per cell levels.

The initial brief illumination is saturating, but 40 minutes later the seedlings have acquired the ability to respond to a second brief illumination. The rate of increase in ribulose carboxylase activity in seedlings that have been illuminated twice is greater than the rate in seedlings that have been illuminated only once.

Far-red light prevents further increase in enzyme activity 48 hours after the initial illumination. There is a lag period interposed between the time of illumination with far-red light and the time at which the seedlings show the greatest effect of far-red light. It was concluded that the phytochrome influence on protein synthesis is not at the terminal steps.

  相似文献   

19.
Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl and K+. The postshrinking volume recovery is achieved by K+ and Cl influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.  相似文献   

20.
The presence of S-alkyl cysteine lyases was established in germinating seedlings of Acacia georginae and Albizzia julibrissin. The enzymes were present in both the cotyledons and the radicle (hypocotyl and root). The specific activity of enzyme in the latter organ was much higher than in the cotyledon. The lyase of each species showed greater affinity for those alkyl cysteine derivatives peculiar to the particular species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号