首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Our laboratory has previously reported that antiestrogen binding to molybdate-stabilized non-transformed estrogen receptor results in a larger form of the receptor in 0.3 M KCl when compared with estrogen bound receptor. Estradiol promoted the formation of monomers in the presence of 0.3 M KCl whereas antiestrogen appeared to promote dimer formation. We have extended these studies examining the rabbit uterine salt-transformed estrogen receptor partially purified by DEAE-cellulose chromatography. We previously demonstrated that estrogen receptor prepared in this way bound to different sites on partially deproteinized chromatin subfractions or reconstituted chromosomal protein/DNA fractions when the receptor was complexed with estrogen vs antiestrogen. Analysis of these receptor preparations indicated that DEAE-cellulose step-elution resulted in a peak fraction which sedimented as a single 5.9S peak in 5-20% sucrose density gradients containing 0.3 M KCl for receptor bound by the antiestrogens H1285 and trans-hydroxytamoxifen. However, receptor bound by estradiol sedimented as 4.5S. These receptor complexes bound DNA-cellulose indicating that these partially purified receptors were transformed. DEAE rechromatography or agarose gel filtration of the partially purified antiestrogen-receptor complexes resulted in significant dissociation of the larger complex into monomers. Incubations of 5.9S antiestrogen-receptor complexes with antibodies against nontransformed steroid receptor-associated proteins (the 59 and 90 kDa proteins) did not result in the interaction of this larger antiestrogen-receptor complex with these antibodies (obtained from L. E. Faber and D. O. Toft, respectively). Our results support the concept that antiestrogen binding induces a different receptor conformation which could affect monomer-dimer equilibrium, thus rendering the antiestrogen-receptor complex incapable of inducing complete estrogenic responses in target tissues.  相似文献   

2.
3.
4.
Background: Cow's milk contain phytoestrogens especially equol depending on the composition of the feed ration. However, it is unknown whether milk differing in equol exhibits different estrogenicity in model systems and thereby potentially in humans as milk consumers. Methods: The estrogenicity of high and low equol milk (HEM and LEM, respectively) and purified equol was investigated in immature female mice including mRNA expression of six estrogen-sensitive genes in uterine tissue. Extracts of HEM and LEM were also tested for estrogenicity in vitro in an estrogen receptor (ER) reporter gene assay with MVLN cells. Results: The total content of phytoestrogens was approximately 10 times higher in HEM compared with LEM, but levels of endogenous milk estrone and 17β-estradiol were similar in the two milk types (503–566 and 60–64.6 pg/ml, respectively). There was no difference in uterine weight between mice receiving LEM and HEM, and no difference from controls. Equol (50 times the concentration in HEM) was not uterotrophic. The ERβ mRNA expression was down-regulated in the uteri of HEM mice compared with LEM and controls, but there was no difference between milk types for any of the other genes. Extracts of HEM showed a higher estrogenicity than extracts of LEM in MVLN cells, and there was a dose-dependent increase in estrogenicity by equol. Conclusion: The higher in vitro estrogenicity of HEM was not reflected as a higher uterine weight in vivo although the down-regulation of ERβ in uterine tissue of HEM mice could suggest some estrogenic activity of HEM at the gene expression level.  相似文献   

5.
6.
N,N-diethyl-2-[(4 phenylmethyl)-phenoxy]-ethanamine X HCl (DPPE), a compound selective for the antiestrogen binding site, is structurally similar to the aminoethyl ether group of antihistamines. Our studies now reveal that H1-, but not H2-antagonists, also compete for this site in the order: DPPE = hydroxyzine = perchlorperazine greater than phenyltoloxamine greater than pyrilamine greater than diphenhydramine. The affinity of these compounds for the antiestrogen binding site correlates with their in vitro cytotoxicity against MCF-7 and EVSA-T human breast cancer cells. Tamoxifen, DPPE and hydroxyzine also bind to H1 receptors present in digitonin-solubilized rat liver microsomes, but with less affinity than pyrilamine, which is selective for this site; the ratio of H1 to antiestrogen binding sites in this preparation is 4:1. The data suggest that the antiestrogen binding site may be, in whole or in part, a receptor for histamine different from H1 and H2.  相似文献   

7.
Estrogen receptors covalently labeled with the estrogen affinity label [3H]ketononestrol aziridine (KNA) or with the antiestrogen affinity label [3H]tamoxifen aziridine (TAZ) were subjected to limited proteolysis with trypsin, alpha-chymotrypsin, and Staphylococcus aureus V8 protease and then analyzed on 10-20% sodium dodecyl sulfate-polyacrylamide gradient gels followed by fluorography. The similar molecular weights of intact receptors (Mr 66,000 daltons) and the proteolytic digest patterns indicate extensive homology among estrogen receptors from MCF-7 human breast cancer cells, GH4 rat pituitary cells and rat uterus when liganded with estrogen or antiestrogen. Each protease generated a distinctive ladder of estrogen receptor fragments, and the fragmentation patterns were virtually identical for estrogen receptors labeled with estrogen (KNA) or antiestrogen (TAZ). Each protease yielded a relatively "resistant" receptor fragment of about 28,000-35,000 daltons. Trypsin and chymotrypsin at higher concentrations generated a much smaller 6,000-8,000 dalton digest product that still contained the [3H]KNA- or [3H]TAZ-labeled receptor binding site. Moreover, the receptor digest patterns were similar for estrogen receptors from the three different target cells. Our studies suggest considerable structural relatedness among these three estrogen receptors and also indicate that these two affinity labels bind to a similar, perhaps identical, region of the receptor molecule.  相似文献   

8.
G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane   总被引:11,自引:0,他引:11  
Recently, GPR30 was reported to be a novel estrogen receptor; however, its intracellular localization has remained controversial. To investigate the intracellular localization of GPR30 in vivo, we produced four kinds of polyclonal antibodies for distinct epitopes on GPR30. Immunocytochemical observations using anti-GPR30 antibody and anti-FLAG antibody show that FLAG-GPR30 localizes to the plasma membrane 24 h after transfection. Treatment with estrogen (17beta-estradiol or E2) causes an elevation in the intracellular Ca2+ concentration ([Ca2+]i) within 10 s in HeLa cells expressing FLAG-GPR30. In addition, E2 induces the translocation of GPR30 from the plasma membrane to the cytoplasm by 1 h after stimulation. Immunohistochemical analysis shows that GPR30 exists on the cell surface of CA2 pyramidal neuronal cells. The images on transmission electron microscopy show that GPR30 is localized to a particular region associated with the plasma membranes of the pyramidal cells. These data indicate that GPR30, a transmembrane receptor for estrogen, is localized to the plasma membrane of CA2 pyramidal neuronal cells of the hippocampus in rat brain.  相似文献   

9.
Summary The membrane currents of wild typeParamecium tetraurelia and the behavioral mutantteaA were analyzed under voltage clamp. TheteaA mutant was shown to have a greatly increased outward current which was blocked completely by the combined use of internally delivered Cs+ and external TEA+. This, along with previous work (Satow, Y., Kung, C., 1976,J. Exp. Biol. 65:51–63) identified this as a K+ current. It was further found to be a calcium-activated K+ current since this increased outward K+ current cannot be elicited when the internal calcium is buffered with injected EGTA. The mutationpwB, which blocks the inward calcium current, also blocks this increased outward K+ current inteaA. This shows that this mutant current is activated by calcium through the normal depolarization-sensitive calcium channel. While tail current decay kinetic analysis showed that the apparent inactivation rates for this calcium-dependent K+ current are the same for mutant and wild type, theteaA current activates extremely rapidly. It is fully activated within 2 msec. This early activation of such a large outward current causes a characteristic reduction in the amplitude of the action potential of theteaA mutant. TheteaA mutation had no effect on any of the other electrophysiological parameters examined. The phenotype of theteaA mutant is therefore a general decrease in responsiveness to depolarizing stimuli because of a rapidly activating calcium-dependent K+ current which prematurely repolarizes the action potential.  相似文献   

10.
11.
12.
13.
14.
15.
MCF-7 cells serially subcultured in media containing phenol red show poor stimulation of progesterone receptor (PR) synthesis in response to estradiol compared to cells grown in phenol red-free media. Phenol red, when added to cytosol, did not compete with [3H]estradiol for estrogen binding sites in concentrations ranging from 2 microM-1 mM. However 25 microM of the dye was sufficient to increase nuclear translocation of estrogen receptor (ER) in the intact cell. Phenol red activates cytoplasmic ER as indicated by DNA-cellulose binding studies. When cells grown in phenol red-free medium were exposed to phenol red for 48 h, PR levels increased in a dose dependent manner. From these data, it may be concluded that phenol red causes estrogenic effect in MCF-7 cells through activation of cytoplasmic receptor by interacting at a site distinct from the steroid binding site.  相似文献   

16.
17.
18.
19.
A new benzothiophene derived antiestrogen, LY139481, inhibited the uterotropic action of estradiol in a dose related fashion, and at 1 mg per day suppressed more than 90 percent of estradiol's activity in immature rats. LY139481 induced minimal uterotropic activity, and that activity declined in relation to dose. The relative binding affinity of LY139481 for rat uterine cytosol estrogen receptors was greater than that of estradiol in competitive assays and increased in relation to temperature (2.9 +/- 0.5 x estradiol at 30 degrees C). LY139481 caused estradiol-induced uterine hypertrophy to regress in a manner similar to that which resulted from withdrawal of estradiol treatment. Three successive daily injections of LY139481 slightly increased uterine weight, and blocked additional uterotropic action in response to estradiol and LY139481 administration on subsequent days. Furthermore, ten daily injections of estradiol alone did not increase uterine weight in animals pretreated with LY139481 for three days. In contrast, LY139481 did not prevent the partial uterotropic action of tamoxifen administration.  相似文献   

20.
The technique of aqueous two-phase partitioning has been used to study changes in estrogen receptor (ER) structure that occur upon ligand binding and/or heating in vitro. Studies with steroidal and nonsteroidal ligands indicate that the difference in partitioning properties between unoccupied and nontransformed ER is due to a ligand-induced change in this conformation of the protein. Furthermore, this conformational change is only partially induced by binding of 4-OH-tamoxifen. Although nontransformed 4-OH-tamoxifen complexes can be transformed by heat, there are significant differences in the transformation process for receptors bound to 4-OH-tamoxifen versus estrogenic ligands. A kinetic analysis of estrogen receptor transformation indicates that the process follows apparent first order kinetics, but is 2.5-fold slower for the 4-OH-tamoxifen-receptor complex. Direct heating of the unoccupied ER causes a significant change in receptor structure. Ligand binding to the heat-altered unoccupied receptor results in a further alteration of receptor structure. Experiments using polyethylene glycol palmitate indicate that the ligand-binding transition is associated with a reduction of the hydrophobic characteristics of the receptor. These results demonstrate that there are a number of independent conformational changes that occur within the monomeric ER steroid-binding subunit upon ligand binding and exposure to elevated temperature in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号