首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-ischemic hyperglycemia aggravates brain damage due to transient global ischemia as demonstrated by exacerbation of brain lesions. Lactacidosis and elevated glutamate levels have been implicated as mechanisms of the increased damage. Our objective was to determine the effects of different levels of glucose (0, 66.5, 450 mg/dL) in cortical superfusates on the ischemia/reperfusion-evoked release of amino acids from the rat cerebral cortex. Physiologic levels of glucose significantly reduced the amount of aspartate, glutamate and gamma-aminobutyric acid and the supra-physiologic levels of glucose reduced the amount of aspartate and phosphoethanolamine released from the cortex during ischemia/reperfusion in comparison with no glucose. The decrease in glutamate release may be due to increased availability of glucose for glycolysis with the subsequent formation of ATP and lactate, which has been shown to act as an energy source for neurons. The decreased levels may also reflect the continued energy-dependent uptake of glutamate by glial cells.  相似文献   

2.
Brain extracellular levels of glutamate, aspartate, GABA and glycine increase rapidly following the onset of ischemia, remain at an elevated level during the ischemia, and then decline over 20-30 min following reperfusion. The elevated levels of the excitotoxic amino acids, glutamate and aspartate, are thought to contribute to ischemia-evoked neuronal injury and death. Calcium-evoked exocytotic release appears to account for the initial (1-2 min) efflux of neurotransmitter-type amino acids following the onset of ischemia, with non-vesicular release responsible for much of the subsequent efflux of these and other amino acids, including taurine and phosphoethanolamine. Extracellular Ca(2+)-independent release is mediated, in part by Na(+)-dependent amino acid transporters in the plasma membrane operating in a reversed mode, and by the opening of swelling-induced chloride channels, which allow the passage of amino acids down their concentration gradients. Experiments on cultured neurons and astrocytes have suggested that it is the astrocytes which make the primary contribution to this amino acid efflux. Inhibition of phospholipase A(2) attenuates ischemia-evoked release of both amino and free fatty acids from the rat cerebral cortex indicating that this group of enzymes is involved in amino acid efflux, and also accounting for the consistent ischemia-evoked release of phosphoethanolamine. It is, therefore, possible that disruption of membrane integrity by phospholipases plays a role in amino acid release. Recovery of amino acid levels to preischemic levels requires their uptake by high affinity Na(+)-dependent transporters, operating in their normal mode, following restoration of energy metabolism, cell resting potentials and ionic gradients.  相似文献   

3.
The content of γ-amino butyric acid (GABA) and of other water soluble amino acids in bovine brain synaptic vesicles was determined by a modified automated amino acid analysis method. Following subcellular fractionation, GABA, glutamate and aspartate were distributed largely in the supernatant fractions and in the upper layer of the sucrose gradient. Only 10–20% of the total content was associated with the vesicular fraction. On the other hand, the other water soluble amino acids, such as serine, glycine and alanine, were evenly distributed between cytoplasmic and particulate fractions in a similar pattern to that observed with cytoplasmic enzyme markers. The results may indicate specific association of GABA, glutamate and aspartate with low density particles or cytoplasmic components.  相似文献   

4.
The ionic mechanisms underlying the action of excitatory amino acids were investigated in the rat motor cortex. Ion-selective microelectrodes were attached to micropipettes such that their tips were very close and local changes in extracellular concentration of sodium, calcium, and potassium ions elicited through ionophoretic applications of glutamate (Glu) and of its agonists N-methyl-D-aspartate (NMDA), quisqualate (Quis), and kainate (Ka) were measured. These agents produced moderate increases in [K+]o (up to 13 mM) but, in contrast, substantial tetrodotoxin-insensitive decreases in [Na+]o (maximally of 60 mM). NMDA-induced sodium responses could be blocked by manganese, while the Quis- and Ka-induced responses were not. Quis and Ka produced increases in [Ca2+]o or biphasic responses while NMDA, even with small doses, induced each time drastic decreases in [Ca2+]o (maximally of 1.15 mM), which could be attenuated or blocked by manganese but not by organic calcium channel blockers. NMDA responses could be abolished by reduced doses of 2-amino-phosphonovalerate. The largest Glu- and NMDA-induced calcium responses were observed in the superficial cortical layers, but such maxima disappeared after selective degeneration of pyramidal tract neurons. All amino acids produced sizeable reductions in the extracellular space volume. The following can be concluded. (i) All the excitatory amino acids tested induce an increased permeability to sodium and potassium ions. (ii) In addition, the NMDA-operated channels have specifically a large permeability for calcium, although calcium ions contribute only by less than 10% to the NMDA-induced inward currents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The parietal cortical slices obtained from 8 week-old (young) and 78 week-old (middle-aged) male Wistar rats were incubated withd-[U-14C]glucose in oxygensaturated Gey's balanced salt solution. Subsequently, the radioactivities of liberated CO2 and glucose-derived amino acids (alanine, aspartate, GABA, glutamate and glutamine) obtained from the slices were measured. In the middle-aged rats as compared to the young rats, the amount of radioactivity of CO2 (P<0.01) and glutamate (P<0.05) showed a significant raduction with glutamine unchanged, while that of alanine (P<0.01), aspartate (P<0.05) and GABA (P<0.05) increased significantly. The results indicate that with advancing age the overall glucose oxidation in the cerebral cortex declines but the metabolic pathway to form amino acids is not uniformly suppressed. Therefore, the above characteristic glucose metabolism could be related to the development of heterogeneous enzyme activities associated with aging in the brain.  相似文献   

6.
7.
8.
The effects of glutamate, NMDA and quisqualate on carbachol-and norepinephrine-elicited formation of inositol phosphate (IP) were evaluated in slices prepared from the cerebral cortex of 3-and 24-month Sprague-Dawley rats. Glutamate, NMDA, and quisqualate antagonized the IP response to carbachol in a concentration-dependent fashion. This antagonism was more pronounced in aged than in young rats, both for glutamate (IC5O 0.114 and 0.210 mM) and NMDA (IC5O 0.0029 and 0.127 mM), but not for quisqualate. Glutamate (but not NMDA) also antagonized in a concentration-dependent fashion the IP response to norepinephrine, IC50s were 0.061 and 0.126 mM for aged and young rats, respectively; quisqualate had an inhibitory effect only at 1 mM concentration in the two age-groups, while in aged rats some stimulatory effect was present at 0.1 mM concentration. Glutamate, NMDA and quisqualate (1 mM) did not affect basal IP accumulation in either young or aged rats; quisqualate, however, at 0.1 mM concentration had some stimulatory effect, more pronounced in aged rats. This effect was probably responsible for the biphasic effect of quisqualate in this age-group. The most important finding consists of the demonstration of an age-related increase in the inhibitory effects of NMDA on carbachol-induced IP accumulation. This implies an altered modulation of cholinergic post-receptor mechanisms by glutamatergic mechanisms.  相似文献   

9.
The effects of Li+ on carbachol-stimulated phosphoinositide metabolism were examined in rat cerebral-cortex slices labelled with myo-[2-3H]inositol. The muscarinic agonist carbachol evoked an enhanced steady-state accumulation of [3H]inositol monophosphate ([3H]InsP1), [3H]inositol bisphosphate ([3H]InsP2), [3H]inositol 1,3,4-trisphosphate ([3H]Ins(1,3,4)P3), [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and [3H]inositol tetrakisphosphate ([3H]InsP4). Li+ (5 mM), after a 10 min lag, severely attenuated carbachol-stimulated [3H]InsP4 accumulation while simultaneously potentiating accumulation of both [3H]InsP1 and [3H]InsP2 and, at least initially, of [3H]Ins(1,3,4)P3. These data are consistent with inhibition of inositol mono-, bis- and 1,3,4-tris-phosphate phosphatases to different degrees by Li+ in brain, but are not considered to be completely accounted for in this way. Potential direct and indirect mechanisms of the inhibitory action of Li+ on [3H]InsP4 accumulation are considered. The present results stress the complex action of Li+ on cerebral inositol metabolism and indicate that more complex mechanisms than are yet evident may regulate this process.  相似文献   

10.
Amino Acids - The application of high concentrations of taurine induces long-lasting potentiation of synaptic responses and axon excitability. This phenomenon seems to require the contribution of a...  相似文献   

11.
12.
N R Goltermann 《Peptides》1982,3(5):733-737
The synthesis of the COOH-terminal octa- and tetrapeptides of cholecystokinin (CCK) has been studied in rat cerebral cortex after intraventricular administration of radioactive amino acids characteristic of the porcine COOH-terminal octapeptide of CCK, CCK-8. After immunosorption with a COOH-terminal directed antibody, cortical CCK was fractionated on Sephadex G-50 columns. The experiments demonstrated newly synthesized CCK forms which coeluted with porcine CCK-8 and CCK-4. Except for threonine the amino acids employed, methionine, tryptophan, aspartic acid, glycine and phenylalanine were incorporated. The sequence-specific radioimmunoassay, the incorporation of the employed labeled amino acids, and the elution pattern by gel filtration, suggest an almost identical structure of porcine and rat cortical CCK-8, and a concomitant synthesis of CCK-8 and CCK-4 in rat cerebral cortex.  相似文献   

13.
14.
1. Polyamines were found to be associated with microsomes of rat cerebral cortex, the amount of spermine being about four times that of spermidine. Cell sap contained more spermidine than spermine. 2. Both polyamines were able to stimulate the incorporation of [(14)C]valine into microsomes in vitro with a maximum rate equal to 250% of the control. Polyamines stimulated at concentrations close to the amount of spermine and spermidine naturally present in the system. 3. Spermine (0.05mm) was used to study the mechanism of action of polyamines. The increasing of microsome and cell-sap concentration facilitated the action of spermine, but the same process was inhibited by increasing pH5-enzyme concentration. 4. Spermine did not affect the association of [(14)C]valine with tRNA in cell sap, but increased the rate of aminoacyl-tRNA formation in pH5 enzyme preparations. However, this process was not affected in any case when incorporating microsomes were present. 5. It is suggested that microsomes are the main site of action of polyamines.  相似文献   

15.
The levels of free amino acids in the cerebral cortex of acute and chronic uremic rats were examined. Amino acids significantly elevated were aspartate, glutamine, glycine, histidine, ornithine, phenylalanine, phosphoethanolamine and taurine, whereas 1-methyl histidine and 3-methyl histidine were specifically detected in uremic rats. Glutamate, arginine and carnosine disclosed a significant reduction. There was no change in the concentrations of γ-aminobutyrate and alanine. The above findings were essentially identical in both acute and chronic uremia. It was conjectured that these changes of amino acid levels in the brain might participate in the progress of uremic encephalopathy.  相似文献   

16.
It has been observed that -hydroxy--amino acids are transformed into other amino acids, when heated in dilute solutions with phosphorous acid, phosphoric acid or their ammonium salts. It has been shown that as in the case of previously reported glycine-aldehyde reactions, glycine also reacts with acetone to give -hydroxyvaline under prebiologically feasible conditions. It is suggested, therefore, that the formation of -hydroxy--amino acids and their transformation to other amino acids may have been a pathway for the synthesis of amino acids under primitive earth conditions.  相似文献   

17.
In rat prefrontal cortical slices, the excitatory amino acids N-methyl-D-aspartate (NMDA), ibotenate, L-aspartate, quisqualate, kainate and L-glutamate inhibit carbachol-induced phosphoinositide hydrolysis as measured by the accumulation of [3H]inositol-1-phosphate ([3H]IP1). NMDA dose-dependently inhibited the carbachol response (IC50 = 14.4 microM), and this inhibition was blocked by the NMDA receptor antagonist D,L-aminophosphonovaleric acid. Lowering medium Na+ concentration to 10 mM or exposing slices to pertussis toxin alleviated the inhibitory effect of NMDA on carbachol-induced [3H]IP1 formation. Serotonin-induced stimulation of [3H]IP1 was also inhibited by NMDA; in contrast, stimulation by norepinephrine, epinephrine or dopamine was unaffected. The results suggest that excitatory amino acids, besides their traditional role as stimulatory substances, can also act to inhibit the production of 2nd messengers activated by certain neurotransmitters in the brain.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号