首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythrocytes suspended in a medium of low ionic strength lyse under the effect of an exponential electrical pulse. The percentage of haemolysed cells decreases several-fold in the presence of divalent cations. The protective action of the ions studied increases in the following order: Ca++, Mg++, Zn++. It is assumed that divalent ions bind to the negative charges of the lipid and protein molecules and reduce their electrostatic repulsion, which results in stabilization of the membranes.  相似文献   

2.
J S Lee 《Nucleic acids research》1990,18(20):6057-6060
As with other guanine-rich sequences, poly[d(GGA)], poly[d(GA)] and poly[d(GAA)] probably form four-stranded or tetraplex structures. Thermal denaturation profiles were measured for these polymers at pH8 in the presence of Na+, NH4+, K+, Cs+, Mg2+, Ca2+ and Ba2+. For poly[d(GA)], Na+, NH4+, K+ stabilize the tetraplex to similar extents and the Tm increases with increasing ionic strength. In contrast the Tms with Mg2+, Ca2+ and Ba2+ are significantly different and reach maxima at about 5mM of cation. The tetraplex from poly [d(GAA)] behaves in a similar manner. Thermal denaturation profiles for poly[d(GGA)] yield transitions whose hyperchromicity depends both on the concentration and nature of the ion. A reversible cooperative transition is not observed at concentrations greater than 0.15M K+, 1mM Ca2+ or 0.3 mM Ba2+ and hysteresis is evident at some concentrations. These results are consistent with the idea that K+ and ions of a similar size can form a coordination complex with the 6-Keto group of eight guanines (G8-DNA). Unlike the tetraplex polymer this G8-DNA does not melt cooperatively.  相似文献   

3.
The assembly of DNA duplexes into higher-order structures plays a major role in many vital cellular functions such as recombination, chromatin packaging and gene regulation. However, little is currently known about the molecular structure and stability of direct DNA–DNA interactions that are required for such functions. In nature, DNA helices minimize electrostatic repulsion between double helices in several ways. Within crystals, B-DNA forms either right-handed crossovers by groove–backbone interaction or left-handed crossovers by groove–groove juxtaposition. We evaluated the stability of such crossovers at various ionic concentrations using large-scale atomistic molecular dynamics simulations. Our results show that right-handed DNA crossovers are thermodynamically stable in solution in the presence of divalent cations. Attractive forces at short-range stabilize such crossover structures with inter-axial separation of helices less than 20 Å. Right-handed crossovers, however, dissociate swiftly in the presence of monovalent ions only. Surprisingly, left-handed crossovers, assembled by sequence-independent juxtaposition of the helices, appear unstable even at the highest concentration of Mg2+studied here. Our study provides new molecular insights into chiral association of DNA duplexes and highlights the unique role divalent cations play in differential stabilization of crossover structures. These results may serve as a rational basis to understand the role DNA crossovers play in biological processes.  相似文献   

4.
The distribution of divalent ions in semidilute solutions of high-molecular-mass DNA containing both sodium chloride and strontium chloride in near-physiological conditions is studied by small-angle x-ray scattering and by small-angle neutron scattering. Both small-angle neutron scattering and small-angle x-ray scattering reveal a continuous increase in the scattering intensity at low q with increasing divalent ion concentration, while at high q the scattering curves converge. The best fit to the data is found for a configuration in which DNA strands of cross-sectional radius 10 angstroms are surrounded by a counterion sheath of outer radius approximately 13.8 angstroms, independent of the strontium chloride concentration. When the strontium chloride is replaced by calcium chloride, similar results are obtained, but the thickness of the sheath increases when the divalent salt concentration decreases. These results correspond in both cases to partial localization of the counterions within a layer that is thinner than the effective Debye screening length.  相似文献   

5.
Small acidic peptides involved in gene expression have been isolated from prokaryotic and eukaryotic cells. Synthetic peptides, designed on the basis of native peptides characteristics, show a biological activity similar to that of native peptides in in vitro reconstituted systems. These synthetic peptides are able to bind to DNA in presence of divalent cations (Cu2+, Fe2+, Mg2+) and salt/ethanol.  相似文献   

6.
7.
8.
J L Leroy  M Guéron 《Biopolymers》1977,16(11):2429-2446
The binding of Mn2+ to yeast tRNAPhe at 25°C is measured by esr, and found to depend strongly on the concentration of monovalent cations, showing the importance of electrostatic effects. In low sodium (<15mM/l.), the affinity is high and the Scatchard plots are distinctly curved. In high sodium (>50mM/l.), the affinity and the curvature are reduced. In a limited range of sodium concentrations (15–30mM/l.), the folding of tRNA which is induced by the divalent ions results in cooperative binding, leading to upwards convexity of the Scatchard plot. An electrostatic model is developed, based on a single type of binding site which we take to be the phosphates, with a binding constant for Mn2+ in the range of that found for ApA, 10 l./M. We compute the change in the binding constant due to the electrostatic potential of the distant charges (other phosphates and counterions), using a single set of parameters for all sodium concentrations. The model predicts that the plots in low sodium are curved, and a good fit to the experimental results is obtained: it is therefore not legitimate or necessary to interpret these results in terms of two types of binding sites. In high salt, the model gives plots that are only slightly curved, corresponding to weaker electrostatic effects. This shows that a search for sites with a special binding mode should be done in high salt. The computed plots are in good agreement with the data, except for slight differences concerning the first bound ions, which give a possible indication in favor of special binding. Given the observation of one special site for Mg2+ at 4°C in high sodium [Stein, A. & Crothers, D. M. (1976) Biochemistry 15 , 157–160] in E. coli tRNAfMet, we have measured the binding of Mn2+ at lower temperature. At 12°C, in both yeast tRNAPhe and E. coli tRNAfMet, the plots clearly indicate special binding. A site found in high sodium is on a very different footing from the four to six so-called strong sites unduly derived from low-salt binding plots.  相似文献   

9.
The binding of citrate and acidic peptide DDSDEEN with DNA in the presence of divalent cations is compared. Citric acid shows a higher number of binding sites on the DNA compared to the peptide; this is probably due to the bigger sitric hindrance of the peptide compared to the citric acid for the binding in the DNA grooves. Moreover, DNA preincubated with saturating amounts of citric acid is not available for the binding with successively added peptide. Therefore the peptide and citrate binding sites to some extent overlap.  相似文献   

10.
Heat denaturation profiles of rat thymus DNA, in intact cells, reveal the presence of two main DNA fractions differing in sensitivities to heat. The thermosensitive DNA fraction shows certain properties similar to those of free DNA: its stability to heat is decreased by alcohols and is increased in the presence of the divalent cations Ca2+, Mn2+, or Mg2+ at concentrations of 0.1-1.0 mM. Unlike free DNA, however, this fraction denatures over a wide range of temperature, and is heterogeneous, consisting of at least two subfractions with different melting points. The thermoresistant DNA fraction shows lowered stability to heat in the presence of Ca2+, Mn2+, or Mg2+ and increased stability in the presence of alcohols. It denatures within a relatively narrow range of temperature, consists of at least three subfractions, and, most likely, represents DNA masked by histones. The effect of Ca2+, Mn2+, or Mg2+ in lowering the melting point of the thermoresistant DNA fraction is seen at cation concentrations comparable to those required to maintain gross chromatin structure in cell nuclei or to support superhelical DNA conformation in isolated chromatin (0.5-1.0 mM). It is probable that factors involved in the maintenance of gross chromatin organization in situ and/or related to DNA superhelicity also have a role in modulating DNA-histone interactions, and that DNA-protein interactions as revealed by conventional methods using isolated chromatin may be different from those revealed when gross chromatin morphology remains intact.  相似文献   

11.
12.
Electric birefringence of DNA and chromatin. Influence of divalent cations.   总被引:5,自引:0,他引:5  
The effects of divalent cations on the DNA and chromatin conformation have been investigated by electric birefringence and birefringence relaxation measurements at low and constant ionic strength (0.001). An important decrease of the intrinsic optical anisotropy of DNA has been found in the presence of Mn2+ and Cu2+, but not with Mg2+. A complex variation of the mean relaxation time with the ratio I/P of ion to DNA-phosphate molar concentration has been evidenced in the presence of Mn2+ and Cu2+, while the mean relaxation time monotonously decreased in the presence of Mg2+. These observations are interpreted in terms of a specific organization of DNA in a compact, rigid structure, in the presence of Mn2+ and Cu2+, and a non-specific coiling in the presence of Mg2+. Drastic conformational changes encountered by chromatin in the presence of Mg2+ and Mn2+ cations have also been evidenced through electric birefringence measurements. They are interpreted by the formation of a superhelical compact arrangement of nucleosome strings which yielded a reversal of the birefringence sign with respect to the negative anisotropy observed in the presence of Na+ ions. The removal of the histone H1 prevented the appearance of this quaternary structure. More extended fragments of the chromatin chain obtained by ECTHAM chromatography of sonicated chromatin could not afford such compact arrangements.  相似文献   

13.
The organization of rat liver nuclei in vitro depends on the ionic milieu. Turbidity measurements of nuclear suspensions in the presence of varying concentrations of divalent cations have been correlated with nuclear ultrastructure. The concentration of MgCl2 (2 mM) at which turbidity of nuclear suspensions is maximal and chromatin condensation appears most extensive is the same concentration that reportedly (Gottesfeld et al., 1974, Proc. Natl. Acad. Sci. U. S. A. 71:2193-2197) precipitates "inactive" chromatin. Thus, a mechanism is suggested by which chromatin activity and ultrastructural organization within the nucleus may be mediated. The nuclear organizational changes attendant upon the decrease in divalent cation concentration were not entirely reversible.  相似文献   

14.
Circular dichroism spectroscopy, absorption spectroscopy, measurements of Tm values, sedimentation analysis and electron microscopy were used to study properties of calf thymus DNA in methanol-water mixtures as a function of monovalent cation (Na+ or Cs+) concentration and also in the presence of divalent cations Ca2+, Mg2+, and Mn2+. In the absence of divalent cations only slight conformational changes occurred and no condensation and/or aggregation could be detected. The Tm values depend on the amount of methanol and on the nature and concentration of cations. In methanol-water mixtures higher thermal stability was observed in solutions containing Cs+ ions. Up to 40% (v/v) methanol the addition of divalent ions leads to DNA stabilization. At methanol concentration higher than 50% the presence of divalent cations causes DNA condensation and denaturation even at room temperature. The denaturation is reversible with respect to EDTA addition indicating that no separation of complementary strands occurred and the resulting form of DNA is probably similar to the P form. DNA destacking appears to be a direct consequence of stronger cation binding by the condensed DNA in methanol-water mixtures.  相似文献   

15.
We have examined the conformational properties of poly(dG-m5dC) under a variety of low salt conditions and sample preparations. Extensive dialysis against 0.5 mM Na-cacodylate resulted in a left-handed polynucleotide conformation as determined by circular dichroism, in agreement with recently reported results. Similarly, extensive dialysis against Tris-EGTA also led to a left-handed conformation. Dilution of these samples led to a transition to the right-handed conformation. More stringent treatments such as dialysis followed by passage over an ion exchange column also resulted in a right-handed conformation. When these various solutions were examined using atomic absorption spectroscopy, significant levels of Mg+2 were observed (greater than or equal to 190 per 1000 nucleotides) in all samples showing a left-handed form, while much lower levels (less than or equal to 45 per 1000 nucleotides) were found in the low salt samples displaying a right-handed conformation. Addition of MgCl2 to samples in which divalent cations had been almost completely removed led to the reformation of the left-handed form. These results indicate that the left-handed form seen under certain low salt conditions is due to the presence of Mg+2 ions that remain bound to the polynucleotide, even in the presence of EDTA.  相似文献   

16.
Cytosolic sulfotransferases (STs), traditionally viewed as Phase II drug-metabolizing or detoxifying enzymes, are increasingly being implicated in the metabolism of endogenous biologically-active molecules. Except for studies on changes in their levels of expression and activity in the early stage of development in mammals, very little is known about how these enzymes are regulated. In this study, the regulatory effects of divalent metal cations on the activity of human cytosolic STs were quantitatively evaluated. Results obtained indicate that all nine human cytosolic STs examined are partially or completely inhibited/stimulated by the ten divalent metal cations tested at 10 mM concentration. Compared with the other metal cations, the inhibitory or stimulatory effect of Mg2+ and Ca2+ on the activities of the human cytosolic STs appeared to be relatively smaller. Concentration-dependent effects of the divalent metal cations were further examined. The IC50 or EC50 values determined for different divalent metal cations were mostly above their normal physiological concentration ranges. In a few cases, however, IC50 values close to the physiological concentrations of certain divalent metal cations were observed. Using the monoamine (M)-form phenol ST (PST) as a model, it was demonstrated that the K(m) for dopamine changed only slightly with increasing concentrations of Cd2+, whereas the V(max) was dramatically decreased.  相似文献   

17.
New downstream methods for the purification of antibodies are required to meet the demands of current and future antibody applications, e.g. for mass production as cancer therapeutic. The standard chromatographic methods suffer from high material costs and mass transfer limitations. In this study, we established and characterized a method for DNA precipitation for antibody purification using divalent cations, particularly CaCl2, using four different antibodies. By implementing high‐throughput screening using a factorial design plan, we determined that CaCl2 concentration and PO43? concentration were significant factors, while temperature and pH were not significant. We detected DNA precipitation as well as host‐cell protein (HCP) reduction. Two‐dimensional difference gel electrophoresis (2D‐DIGE) revealed that improved HCP removal does not occur via an unspecific random mechanism such as the enclosure of proteins in the precipitate. CaCl2 precipitation of DNA and HCP can be combined with nonchromatographic methods such as precipitation and protein A affinity chromatography. This additional purification method not only enhances DNA removal, but also the removal of HCP and antibody multimers, which will reduce immunogenicity and increase homogeneity of the resulting drug.  相似文献   

18.
Association constants for ruthenium(III) hexaamine and cobalt(III) tris(2,2'-bipyridine) with solution and surface-immobilized DNA were determined. The interaction of the cationic redox molecules with calf thymus DNA was monitored via normal pulse voltammetry with analysis of the mass-transfer limited current assuming a discrete binding-site model. Single-stranded DNA was immobilized on gold via self-assembly of a 5' hexanethiol linker. Double-stranded surface-immobilized DNA was produced by hybridization of a complementary target to surface-immobilized single strands. The interaction between the metal complexes and surface-immobilized DNA was determined using chronocoulometry to construct adsorption isotherms. The measured binding constants for the cationic redox molecules with solution, surface-immobilized single-stranded, and double-stranded DNA are well-correlated, even as a function of ionic strength. The agreement between the determined association constants for the surface-immobilized and solution DNA indicates the potential utility of DNA-derivatized electrodes for examination of small molecule interactions with nucleic acids.  相似文献   

19.
20.
Strongly correlated electrostatics of DNA systems has drawn the interest of many groups, especially the condensation and overcharging of DNA by multivalent counterions. By adding counterions of different valencies and shapes, one can enhance or reduce DNA overcharging. In this paper, we focus on the effect of multivalent co-ions, specifically divalent co-ions such as SO\(_{4}^{2-}\). A computational experiment of DNA condensation using Monte Carlo simulation in grand canonical ensemble is carried out where the DNA system is in equilibrium with a bulk solution containing a mixture of salt of different valency of co-ions. Compared to systems with purely monovalent co-ions, the influence of divalent co-ions shows up in multiple aspects. Divalent co-ions lead to an increase of monovalent salt in the DNA condensate. Because monovalent salts mostly participate in linear screening of electrostatic interactions in the system, more monovalent salt molecules enter the condensate leads to screening out of short-range DNA–DNA like charge attraction and weaker DNA condensation free energy. The overcharging of DNA by multivalent counterions is also reduced in the presence of divalent co-ions. Strong repulsions between DNA and divalent co-ions and among divalent co-ions themselves lead to a depletion of negative ions near the DNA surface as compared to the case without divalent co-ions. At large distances, the DNA–DNA repulsive interaction is stronger in the presence of divalent co-ions, suggesting that divalent co-ions’ role is not only that of simple stronger linear screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号