首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
栽培种籽料苋(lmaranthus hypochondriacus L。)是一种很有潜力的新型作物。它营养价值高、蛋白质含量丰富、氨基酸平衡好、耐旱、耐盐碱和酸、抗逆性强、适应性广,被认为易极有潜力的、为全球提供粮食的替代作物之一。但是籽粒苋于粒重仅0.7-1.2g,种子易散落。于是,和许多其它植物一样,籽粒苋中也找到了雄性不育株。但是它的小孢子发育过程及其败育时期和不育特征尚不清楚,为它的杂交育种研究带来不便。本文通过电镜对雄性可育和不育的两种籽粒苋小孢子进行观察。发现不育小孢子败育起始于四分体释放以后的单核花粉期。在此之前小孢子的发育是一样的。花粉分化早期,孢原组织分化出初级造孢组织、绒毡层、中间层、药壁内层和表皮层(图1);造孢组织继续分裂,细胞不断扩大,形成小孢子母细胞(图2);小孢子母细胞不断增大,周围积累胼胝质并逐渐与绒毡层分离,出现大液泡(图3);小孢子母细胞减数分裂,四分体形成,包埋于胼胝质中;绒毡层有丝分裂,有双核细胞;大液泡消失;细胞壁开始降解(图4)。胼胝质逐渐消失,小孢子从四分体中释放以后(单核花粉期),在雄性可育籽粒苋里,小孢子有丝分裂、迅速膨大变圆,可见两个深色雄仁,花粉壁加厚(图5);进入收缩期,绒毡层降解,突入花药腔,环绕小孢子周围(图6);花粉壁不断加厚,小孢子更趋成熟(图7),直直形成内含大量淀粉的完全成熟花粉粒(图8)。而在雄性不育籽粒苋里,出现如下不育特征:小孢子粉壁未能进一步加厚,小孢子形状变得怪异(图13);花粉内含物溶解,空泡化,成为不育花粉(图14)。小孢子在花药中的发育完全依赖绒毡层细胞提供所需的营养物质和信息,绒毡层异常必然导致花粉败育,胼胝质降解不影响小孢子母细胞减数分裂,而是影响小孢子初生外壁的发育,从而导致小孢子发育退化。籽粒苋花粉败育过程中未见胼胝质降解,其原因有待进一步研究。有报道,正常花粉发育过程中常含有大量液泡,籽粒苋可育花粉的发育过程也证实液泡的发育与花粉粒的充实、花粉的形状有密切关系,而不育花粉中小液泡逐渐膨大,形成空泡后破裂。  相似文献   

2.
辣椒雄性不育系与可育系小孢子发生的细胞学观察   总被引:12,自引:0,他引:12  
为了探讨辣椒雄性不育花药败育时期和方式,以辣椒雄性不育系1442A、13733A及其可育系为试材,进行了研究。结果发现:败育现象从造孢细胞时期以后每个阶段都有发生,败育形式有造孢细胞液泡化、畸形、拉长、细胞间隙大;绒毡层细胞径向过度伸长,高度液泡化,且出现多层细胞,严重挤压小孢子母细胞,解体较晚且充塞花粉囊室;薄壁细胞取代了药室内壁、中层、绒毡层和小孢子母细胞的分化;药室内壁、中层层数增加,绒毡层细胞肥大,造孢细胞或花粉母细胞分解解体;由于花粉母细胞胼胝质壁不降解而无法释放出四分体小孢子;染色浅、细胞质被降解成空壳的单核期小孢子因缺乏营养物质而败育。  相似文献   

3.
用光镜和电镜观察羽叶薰衣草(Lavandula pinnata L.)雄性不育小孢子发育过程的细胞形态学特征.结果表明:羽叶薰衣草花药4枚,每枚花药通常具4个小孢子囊.花药壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四面体及十字交叉型.小孢子的发育过程可分为造孢细胞期、减数分裂时期、小孢子发育早期、小孢子发育晚期.未观察到二胞花粉期和成熟花粉期.羽叶薰衣草花粉败育主要发生在单核花粉时期,细胞内物质解体并逐渐消失变成空壳花粉或花粉皱缩变形成为各种畸形的败育花粉.在此之前小孢子的发育正常.羽叶薰衣草小孢子不育机制体现在绒毡层过早解体、四分体时期以后各细胞中线粒体结构不正常、胼胝质壁与小孢子母细胞脱离、花药壁细胞中淀粉出现时间异常等. 壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四面体及十字交叉型.小孢子的发育过程可分为造孢细胞期、减数分裂时期、小孢子发育早期、小孢子发育晚期.未观察到二胞花粉期和成熟花粉期.羽叶薰衣草花粉败育主要发生在单核花粉时期,细胞内物质解体并逐渐消失变成空壳花粉或花粉皱缩变形成为各种畸形的败育花粉.在此 前小孢子的发育正常.羽叶薰衣草小孢子不育机制体现在绒毡层过早解体、四分体时期以后各细胞中线粒体结构不正常、胼胝质壁与小孢子母细胞脱离、花药壁细胞中淀粉出现时间异常等. 壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四  相似文献   

4.
对云南泸西栽培灯盏花群体进行调查,发现了灯盏花雄性不育种质个体,其出现频率约为1.06×10-4.对所发现的灯盏花不育株形态特征及其花药发育过程进行了观察,并对花粉活力进行鉴定.结果显示:(1)灯盏花不育株根、茎、叶形态与正常可育植株基本相似,管状花小,花丝短,花药瘦小,无花粉粒散出或花粉无活力.(2)灯盏花在其花药发育的小孢子母细胞时期、四分体时期、小孢子时期和单核早期,由于绒毡层细胞液泡化、提前解体,不能为小孢子或花粉发育提供所需物质,导致小孢子母细胞和四分体解体,产生无花粉的花药;或小孢子和单核花粉胞内降解,形成不同形状和外壁纹饰的败育花粉.研究认为,灯盏花花药绒毡层异常是其花粉败育的主要原因.  相似文献   

5.
采用石蜡切片方法,对甘蓝型油菜隐性上位互作核不育材料1665的可育株与不育株花药进行细胞学观察.结果显示:(1)不育株花药在花粉母细胞减数分裂时期出现异常,部分花粉母细胞细胞分裂相不均等分裂或分裂异常.导致部分四分体形状异常.(2)不育株绒毡层细胞在四分体时期开始生长膨大,单核花粉时期出现液泡化和巨型化,侵占药室,使得小孢子不能正常释放或无法继续发育;部分释放出的小孢子未及时形成花粉壁,阻碍花粉继续发育.不能发育形成二核期和三核期花粉,导致花药败育.  相似文献   

6.
鹅掌楸花粉败育过程的超微结构观察   总被引:18,自引:0,他引:18  
花粉败育是限制鹅掌楸〔Liriodendronchinense(Hemsl.)Sarg.〕生殖成功的重要因素之一。败育多数发生在四分体形成之前,少数发生在小孢子形成以后,是由于花粉发育过程中存在异常现象造成的。异常现象有7个方面:(1)造孢组织解体;(2)小孢子形成过程中胼胝质的积累与降解异常;(3)绒毡层发育异常;(4)小孢子母细胞胞质分裂异常;(5)小孢子解体;(6)生殖细胞败育;(7)药隔维管束韧皮部的伴胞解体。这些原因可引起花粉产量和质量降低,从而影响鹅掌楸生殖过程中的传粉受精及结籽的能力  相似文献   

7.
宁夏枸杞雄性不育材料小孢子发生的细胞形态学观察   总被引:3,自引:0,他引:3  
采用常规显微制片法,在光学显微镜下观察了宁夏枸杞雄性不育材料'YX-1'与可育材料'宁杞1号'的小孢子发生过程和各时期的形态特征.结果表明:不育材料'YX-1'小孢子发育受阻于四分体时期,无法形成正常的单核花粉粒,败育的特征是四分体胼胝质壁不能适时降解,四分孢子在胼胝质壁内液泡化、核质收缩降解,绒毡层细胞异常肥大增生,推迟解体.压片结果表明,不育材料'YX-1'四分孢子形状不规则、空瘪、解体,败育比较彻底.  相似文献   

8.
芝麻(Sesamum indicum)核雄性不育系ms86-1姊妹交后代表现为可育、部分不育(即微粉)及完全不育(简称不育)3种类型。不同育性类型的花药及花粉粒形态差异明显。Alexander染色实验显示微粉植株花粉粒外壁为蓝绿色, 内部为不均一洋红色, 与可育株及不育株花粉粒的染色特征均不相同。为探明芝麻微粉发生机理, 在电子显微镜下比较观察了可育、微粉、不育类型的小孢子发育过程。结果表明, 可育株小孢子母细胞减数分裂时期代谢旺盛, 胞质中出现大量脂质小球; 四分体时期绒毡层细胞开始降解, 单核小孢子时期开始出现乌氏体, 成熟花粉时期花粉囊腔内及花粉粒周围分布着大量乌氏体, 花粉粒外壁有11–13个棱状凸起, 表面存在大量基粒棒, 形成紧密的覆盖层。不育株小孢子发育异常显现于减数分裂时期, 此时胞质中无脂质小球出现, 细胞壁开始积累胼胝质; 四分体时期绒毡层细胞未见降解; 单核小孢子时期无乌氏体出现; 成熟花粉时期花粉囊腔中未发现正常的乌氏体, 存在大量空瘪的败育小孢子, 外壁积累胼胝质, 缺乏基粒棒。微粉株小孢子在减数分裂时期可见胞质内有大量脂质小球, 四分体时期部分绒毡层发生变形, 单核小孢子时期有部分绒毡层开始降解; 绒毡层细胞降解滞后为少量发育进程迟缓的小孢子提供了营养物质, 部分小孢子发育为正常花粉粒; 这些花粉粒比较饱满, 表面有少量颗粒状突起, 但未能形成覆盖层, 花粉囊腔中及小孢子周围存在少量的乌氏体。小孢子形成的育性类型与绒毡层降解是否正常有关。  相似文献   

9.
S351—1西瓜雄性不育的细胞学研究   总被引:7,自引:0,他引:7  
西瓜S351-1雄性不育材料的细胞学观察表明:与对照的同系可育株相比,败育发生在次级造孢细胞到小孢子母细胞或小孢子四分体阶段,多数不育雄花花药中绒毡层始终未分化,药壁常由7 ̄8层细胞组成,少数不育花药中出现绒毡层徒长现象;次级造孢细胞败育不同步,出现多核及多核仁现象,败育后期,药壁细胞逐渐解体,药室瓦解,花粉囊收缩变形。由此可见:其雄性不育与绒毡层的发育异常有直接联系。  相似文献   

10.
西瓜S351-1雄性不育材料的细胞学观察表明:与对照的同系可育株相比,败育发生在次级造孢细胞到小孢子母细胞或小孢子四分体阶段,多数不育雄花花药中绒毡层始终未分化,药壁常由7-8层细胞组成,少数不育花药中出现绒毡层徒长现象;次级造孢细胞败育不同步,出现多核及多核仁现象,败育后期,药壁细胞逐渐解体,药室瓦解,花粉囊收缩变形。由此可见:其雄性不育与绒毡层的发育异常有直接联系。  相似文献   

11.
Zinc deficiency decreased pollen viability in maize (Zea mays L. cv. G2) grown in sand culture. On restoring normal zinc supply to zinc-deficient plants before the pollen mother cell stage of anther development, the vegetative yield of plants and pollen fertility could be recovered to a large extent, but the recovery treatment was not effective when given after the release of microspores from the tetrads. If zinc deficiency was induced prior to microsporogenesis it did not significantly affect vegetative yield and ovule fertility, but decreased the fertility of pollen grains, even of those which visibly appeared normal. If the deficiency was induced after the release of microspores from the tetrads, not only vegetative yield and ovule fertility but pollen fertility also remained unaffected.  相似文献   

12.
13.
新型小麦胞质不育系花粉败育的细胞学观察   总被引:3,自引:0,他引:3  
观察了1种新型小麦细胞质雄性不育素(CMS)-(野生二粒小麦)中国春CMS花药和花粉败育的细胞学过程,结果表明;(1)不育系在小孢子发育至单核晚期以前,除了雄蕊心皮化发生率(37.2%)较高外,其花药和花粉发育绝大多数与同核保持系相似,是正常的,仅少量表现异常而导致败育,异常现象主要有:雄蕊心皮化。药室合并,药壁组织喙状突起,绒毡层异常,小孢子母细胞粘连,减数分裂异常,小孢子异常等。(2)不育系花  相似文献   

14.
Summary Multiple and multipolar spindles are a generalized feature of microsporogenesis in a cultivar of Fuchsia. Only the first meiotic division occurs and gives rise to sporads with nine microspores. Variation in chromosomal complements of the microspores is illustrated by pollen polymorphism. Since some of these pollen grains are able to germinate, the possible breeding value of this super-reductional type of division is questionable. Hypotheses concerning this phenomenon found in the literature are discussed in the light of our results.  相似文献   

15.
The Arabidopsis thaliana MALE STERILITY 2 ( MS2 ) gene product is involved in male gametogenesis. The first abnormalities in pollen development of ms2 mutants are seen at the stage in microsporogenesis when microspores are released from tetrads. Expression of the MS2 gene is observed in tapetum of wild-type flowers at, and shortly after, the release of microspores from tetrads. The MS2 promoter controls GUS expression at a comparable stage in the tapetum of transgenic tobacco containing an MS2 promoter–GUS fusion. The occasional pollen grains produced by mutant ms2 plants have very thin pollen walls. They are also sensitive to acetolysis treatment, which is a test for the presence of an exine layer. The MS2 gene product shows sequence similarity to a jojoba protein that converts wax fatty acids to fatty alcohols. A possible function of the MS2 protein as a fatty acyl reductase in the formation of pollen wall substances is discussed.  相似文献   

16.
Efforts were made to study microsporogenesis and genetics of fertility restoration of A(4) cytoplasmic-nuclear male-sterility (CMS) system in pigeonpea. The process of microsporogenesis in the male-sterile (ICPA 2039) and its maintainer (ICPB 2039) plants was normal up to the tetrad formation stage. The tapetal cells in the male-sterile anthers degenerated soon after tetrad formation, resulting in shriveled and degenerated microspores. In the maintainer plants, the tapetal cells were normal and microspores were functional. The breakdown of the tapetum before the completion of microsporogenesis was the major cause for the expression of male sterility in A(4) CMS system. The studies on the inheritance of fertility restoration showed that in 3 crosses, a single dominant gene; in 1 cross, 2 duplicate genes; and in another cross, 2 complimentary genes governed the fertility restoration.  相似文献   

17.
Metabolic engineering was used to disrupt glutamine metabolism in microspores in order to block pollen development. We used a dominant-negative mutant (DNM) approach of cytosolic glutamine synthetase (GS1) gene under the microspore-specific promoter NTM19 to block glutamine synthesis in developing pollen grains. We observed partial male sterility in primary transgenic plants by using light microscopy, FDA, DAPI and in vitro pollen germination test. Microspores started to die in the early unicellular microspore stage, pollen viability in all primary transgenic lines ranged from 40-50%. All primary transgenics produced seeds like control plants, hence the inserted gene did not affect the sporophyte and was inherited through the female germline. We regenerated plants by in vitro microspore embryogenesis from 4 individual lines, pollen viability of progeny ranged from 12 to 20%, but some of them also showed 100% male sterility. After foliage spray with glutamine, 100% male-sterile plants were produced viable pollen and seed set was also observed. These results suggested that mutated GS1 activity on microspores had a significant effect on normal pollen development. Back-cross progenies (T2) of DH 100% male-sterile plants showed normal seed set like primary transgenics and control plants.  相似文献   

18.
Meiotic division and male gametophyte development were analyzed in one tetraploid (2n = 4x = 36) accession of Brachiaria decumbens cv. Basilisk that showed some pollen sterility. Meiotic process was typical of polyploids in that it consisted of multiple chromosome associations. Precocious chromosome migration to the poles, laggards, and micronucleus formation were abundant in both meiosis I and II and resulted in tetrads with micronuclei. After callose dissolution, microspores were released into the anther locule and had the semblance of being normal. Although each microspore initiated its differentiation by pollen mitosis, in 43.24% of the microspores, nuclear polarization was not observed and the typical hemispherical cell plate was not detected. Division was symmetric and microspores lacked differentiation between the vegetative and the generative cell. Both nuclei were of equal size, presented equal chromatin condensation, and had a spherical shape. After the first pollen mitosis and cytokinesis, each cell underwent a new symmetric mitosis without nuclear polarization. At the end of the second pollen mitosis, four equal nuclei were observed in each pollen grain. After the second cytokinesis, the cells gave rise to four equal-sized pollen grains with a similar tetrad configuration that initially remained together. Sterile pollen grains resulted from abnormal pollen mitosis. This anomaly may be explained by a mutation, probably affecting microtubule cytoskeleton formation. The importance of this male-sterile mutation for Brachiaria breeding programs is discussed.  相似文献   

19.
The spatial relationships observed during microsporogenesis and pollen development in Sorghum bicolor indicate that a strong polarization exists in the anther locule and within individual microspores and pollen grains. During all developmental stages, each sporogenous cell and its derivatives lie continuously adjacent to the tapetum. The microspores and pollen grains form depressions in the tapetal orbicular wall. When the single pore of each microspore is initiated, as a gap in the primexine, it too lies adjacent to the tapetum and remains tightly appressed there until pollen maturity. A sequence of polar phenomena in microspores and pollen grains centers on an axis through the pore and perpendicular to the tapetal surface. These events include migrations of the microspore and vegetative nuclei, initial placement of the generative cell opposite the pore and its later migration, and a polar engorgement process whereby the pore end of the pollen grain (adjacent to the tapetum) fills with starch grains first. The tapetal cytoplasm completely degenerates at precisely the time of pollen engorgement, and its degradation products are believed to be available for pollen uptake at this time. The continuous association of the sporogenous cells or their cellular derivatives and their pores with the tapetum is thought to play an indispensible role in pollen development in sorghum and probably in all other grasses as well. The consistent position of the pore adjacent to the tapetum should be considered another common feature of microsporogenesis in the Gramineae. The characteristic exine pattern forms over the operculum and annulus of the pore, but the lamellae, which underlie the annulus, form a highly modified multilayered nexine. Membrane-like cores are observed in these lamellae and are believed to be involved in the initiation of sporopollenin deposition, but they are obliterated by pollen maturity. Neither the cores nor the lamellae are found in other parts of the pore or in the nonapertured wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号