首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NMR spectroscopy can be used to characterize bacterial polysaccharides such as that of Streptococcus pneumoniae type 1 which is a component of the 23-valent pneumococcal vaccine in clinical use. This particular polysaccharide gives NMR spectra with wide lines apparently due to restricted molecular mobility and chain flexibility which leads to rapid dipolar T(2) relaxation limiting the possibility of detailed spectral analysis. Removal of O-acetyl groups found on approximately two thirds of the repeating subunits of pneumococcal type 1 capsule leads to narrower NMR lines facilitating a complete assignment of the 1H and 13C NMR spectra. Degradation of the polysaccharide by periodate oxidation followed by base treatment leads to an oligosaccharide fragment of approximately three repeating trisaccharide units. This oligosaccharide has narrow NMR lines and 1H and 13C assignments very similar to those of the O-deacetylated polysaccharide. In the native polysaccharide, O-acetyl groups are located on the 2- and 3-positions of the 4-linked galacturonic acid residue providing protection against periodate oxidation. Analysis of NOESY spectra combined with molecular modeling of the oligosaccharide shows that flexibility occurs in certain of the saccharide linkages.  相似文献   

2.
O-Specific polysaccharide, obtained by mild acid degradation of the Proteus mirabilis 03 lipopolysaccharide, was dephosphorylated with 48% HF to give a linear polysaccharide and an amino acid, N-(2-hydroxyethyl)-D-alanine. The structure of the polysaccharide was determined by methylation, the Smith degradation and computer-assisted analysis of the 13C NMR spectra of original and dephosphorylated polymers and oligomers. The structure of the amino acid was elucidated by using 1H and 13C NMR spectroscopy and mass spectrometry (applied to the acetylated methyl ester derivative), optical rotation and CD spectrum data and comparison with the synthetic sample. The repeating unit of P. mirabilis 03 O-specific polysaccharide is shown to have the following structure: (formula; see text)  相似文献   

3.
From the 70% ethanol extract of Mycobacterium smegmatis cells, we isolated a mixture of weakly acidic oligosaccharides composed mainly of glucose and 6-O-methylglucose. The elution pattern from a Bio-Gel P-4 column suggested that the oligosaccharides were smaller than the O-methylglucose polysaccharide (MGP) and could be biosynthetic precursors. Analysis by fast-atom-bombardment mass spectrometry revealed that the oligosaccharides fit into a pattern for polysaccharide synthesis based on an alternate glucosylation-methylation mechanism until the chain reached the composition methylglucose11glucose5glyceric acid, at which time 2 glucose units are added to give glucose2methylglucose11glucose5glyceric acid. The addition of the last 2 glucoses and methylation of one of them to give mature MGP (methylglucose1glucose3methylglucose11glucose5glyceric acid) apparently occurs rapidly because the expected intermediates were not observed. Only 4 glucose units are present at the glyceric acid end of some molecules during all stages of the elongation process, and these represent precursors of a minor MGP homolog with an extra methyl group on the beta 1----3-linked glucose unit of MGP. alpha-D-Glucopyranosyl-(1----2)-D-glyceric acid and alpha-D-glucopyranosyl-(1----6)-alpha-D-glucopyranosyl-(1----2)-D-glycer ic acid were also isolated from the extract and correspond in structure to the expected initial precursors.  相似文献   

4.
On mild acid degradation of the Pseudomonas cepacia serotype 6 lipopolysaccharide, the O-specific polysaccharide was obtained, which contains D-mannose and D-galactose residues in the ratio approximately 1:1, as well as O-acetyl groups. On the basis of 1H and 13C NMR analysis, calculation of specific optical rotation, and methylation, it was concluded that the polysaccharide possesses the following structure: (formula; see text) Regularities in glycosidation effects in 13C NMR spectra of 1,3-linked disaccharides containing furanoside residues are discussed.  相似文献   

5.
Lectin-carbohydrate binding is known to play an important role in a number of different cell-cell interactions including those between certain species of oral streptococci and actinomyces that colonize teeth. The cell wall polysaccharides of Streptococcus oralis ATCC 10557, S. oralis 34, and Streptococcus mitis J22, although not identical antigenically, each function as a receptor molecule for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii. Carbohydrate analysis of the receptor polysaccharide isolated from S. oralis ATCC 10557 shows galactose (3 mol), glucose (1 mol), GalNAc (1 mol), and rhamnose (1 mol). 1H NMR spectra of the polysaccharide show that is is partially O-acetylated. Analysis of the 1H NMR spectrum of the de-O-acetylated polysaccharide shows that it is composed of repeating subunits containing six monosaccharides and that the subunits are joined by a phosphodiester linkage. The 1H and 13C NMR spectra were completely assigned by two-dimensional homonuclear correlation methods and by 1H-detected heteronuclear multiple-quantum correlation (1H[13C]HMQC). The linkage of the component monosaccharides in the polymer, deduced from two-dimensional 1H-detected heteronuclear multiple-bond correlation spectra (1H[13C]HMBC), shows that the repeating unit of the de-O-acetylated polymer is a linear hexasaccharide with no branch points. The complete 1H and 13C assignment of the native polysaccharide was carried out by the same techniques augmented by a 13C-coupled hybrid HMQC-COSY method, which is shown to be especially useful for carbohydrates in which strong coupling and overlapping peaks in the 1H spectrum pose difficulties. The fully assigned spectra of the native polymer show that each of two different positions is acetylated in one-third of the repeating subunits and that the acetylation is randomly distributed along the polymer. The exact positions of acetylation were assigned by a carbonyl-selective HMBC method that unambiguously defines the positions of O-acetylation. The complete structure of the native polysaccharide in S. oralis ATCC 10557 is [formula: see text] Comparison of this structure with those previously determined for the polysaccharides of strains 34 and J22 suggests that the similar lectin receptor activities of these molecules may depend on internal galactofuranose linked (beta 1----6)- to Gal(beta 1----3)GalNAc(alpha) or GalNAc(beta 1----3)Gal(alpha).  相似文献   

6.
A polysaccharide, antigenically related to group C meningococcus, has been isolated from Escherichia coli strain Bos-12 (016; K92; NM). Like groups B and C meningococcal polysaccharide, the Bos-12 antigen is a pure polymer of sialic acid. 13C NMR studies on the meningococcal group B and C polysaccharides have indicated that the former consists of sialic acid units linked 2 leads to 8- alpha, whereas the latter contains the sialic acid residues linked 2 leads to 9-alpha (Bhattacharjee, A.K., Jennings, H.J., Kenny, C.P., Martin, A., and Smith, I.C.P. (1975), J. Biol. Chem. 250, 1926). Comparison of natural abundance 13C NMR spectra of the Bos-12 polysaccharide with group B and C meningococcal polysaccharides established that Bos-12 was either (a) an equimolar mixture of 2 leads to 8-alpha linked sialic acid homopolymers or (b) a 2 leads to 8-alpha/2 leads to 9-alpha heteropolymer. These possibilities were distinguished in the following manner. The fact that Bos-12 polysaccharide precipitated with anti-group C serum but not with anti-group B serum would seem to exclude a. Further, chemical studies (periodate oxidation followed by tritiated NaBH4 reduction) gave saccharides with a radioactive-labeling pattern expected for alternating 2 leads to 8-alpha/2 leads to 9-alpha sialic acid linkages. Bos-12 is thus an 2 leads to 8/2 lead to 9-alpha heteropolymer.  相似文献   

7.
High-resolution magic-angle spinning (hr-MAS) NMR spectroscopy was used to record NMR spectra of a cell paste from the marine diatom Chaetoceros mülleri. This gave information on a cellular storage polysaccharide identified as a beta-D-(1-->3)-linked glucan, using hr-MAS one-dimensional 1H and 13C, two-dimensional 1H,1H-COSY and 13C,1H-correlation spectroscopy. The same structural information was deduced from the liquid state NMR data on the glucan extracted from C. mülleri. The extracted glucan proved to be a beta-D-(1-->3)-linked glucan with a degree of polymerization of 19 and a degree of beta-D-(1-->6) branching of 0.005. The hr-MAS spectrum of the diatom showed several nonglucan resonances in the carbohydrate region of the NMR spectrum (60-103 ppm) that were shown to be noncarbohydrate resonances by means of two-dimensional 13C,1H- and 1H,1H-correlated NMR data.  相似文献   

8.
A specific acidic polysaccharide was isolated from Sh. boydii type 8 antigenic lipopolysaccharide after mild hydrolysis followed by chromatography on Sephadex G-50. The polysaccharide consists of D-glucuronic acid, D-galacturonic acid, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose and 2-amino-1,3-propanediol residues in 1:1:1:1:1 ratio. From the results of methylation analysis, partial acid hydrolysis and Smith degradation, the structure of the repeating unit of the specific polysaccharide was deduced as: (Formula: see text). The 13C NMR spectra of native, O-deacetylated and carboxyl-reduced polysaccharides, as well as the spectrum of oligosaccharide produced by Smith degradation were interpreted. The 13C NMR data fully confirmed the structure of the polysaccharide repeating unit.  相似文献   

9.
Specific lectin-carbohydrate interactions between certain oral streptococci and actinomyces contribute to the microbial colonization of teeth. The receptor molecules of Streptococcus oralis, 34, ATCC 10557, and Streptococcus mitis J22 for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii are antigenically distinct polysaccharides, each formed by a different phosphodiester-linked oligosaccharide repeating unit. These streptococci all coaggregated strongly with both A. viscosus and A. naesludii strains, whereas S. oralis C104 interacted preferentially with certain strains of the latter species. Receptor polysaccharide was isolated from S. oralis C104 cells and was shown to contain galactose, N-acetylgalactosamine, ribitol, and phosphate with molar ratios of 4:1:1:1. The 1H NMR spectrum of the polysaccharide shows that it contains a repeating structure. The individual sugars in the repeating unit were identified by 1H coupling constants observed in E-COSY and DQF-COSY spectra. NMR methods included complete resonance assignments (1H and 13C) by various homonuclear and heteronuclear correlation experiments that utilize scalar couplings. Sequence and linkage assignments were obtained from the heteronuclear multiple-bond correlation (HMBC) spectrum. This analysis shows that the receptor polysaccharide of S. oralis C104 is a ribitol teichoic acid polymer composed of a linear hexasaccharide repeating unit containing two residues each of galactopyranose and galactofuranose and a residue each of GalNAc and ribitol joined end to end by phosphodiester linkages with the following structure. [----6)Galf(beta 1----3)Galp(beta 1----6)Galf(beta 1----6)GalpNAc(beta 1----3) Galp(alpha 1----1)ribitol(5----PO4-]n  相似文献   

10.
The O-antigen polysaccharide of the lipopolysaccharide from the enteroaggregative Escherichia coli strain 62D1 has been determined. Sugar and methylation analysis together with 1H and 13C NMR spectroscopy revealed the components of the repeating unit. Two-dimensional NOESY and heteronuclear multiple-bond correlation experiments were used to deduce the sequence. 1H and 13C NMR spectra indicate heterogeneity in the polysaccharide. Methylation analysis and 1H NMR spectra of native and Smith-degraded material show that the majority (65%) of the repeating units has the following structure: Minor resonances in the NMR spectra are consistent with the presence of repeating units which lack the alpha-d-Galp terminal residue (35%).  相似文献   

11.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Proteus vulgaris O15 and studied by sugar and methylation analyses along with 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, ROESY, and H-detected 1H,(13)C HMQC experiments. The polysaccharide was found to contain an ether of GlcNAc with lactic acid, and the following structure of the repeating unit was established:-->3)-alpha-D-GlcpNAc4(R-Lac)6Ac-(1-->2)-beta-D-GlcpA-(1-->3)-alpha-L-6dTalp2Ac-(1-->3)-beta-D-GlcpNAc-(1-->where L-6dTal and D-GlcNAc4(R-Lac) are 6-deoxy-L-talose and 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-D-glucose, respectively. The latter sugar, which to our knowledge has not been hitherto found in nature, was isolated from the polysaccharide by solvolysis with anhydrous triflic acid and identified by comparison with the authentic synthetic compound. Serological studies with the Smith-degraded polysaccharide showed an importance of 2-substituted GlcA for manifesting of the immunospecificity of P. vulgaris O15.  相似文献   

12.
Mild acid hydrolysis of the lipopolysaccharide from Yersinia kristensenii strain 103 (0:12.26) afforded teichoic acid-like polysaccharide. From the results of methylation, dephosphorylation, partial Smyth degradation, and 13C and 31P NMR data the structure of the repeating unit of the polysaccharide was deduced as follows: [formula: see text] The structure was confirmed by complete interpretation of polysaccharide 13C NMR spectrum.  相似文献   

13.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O176 has been determined. Component analysis together with 1H and 13C NMR spectroscopy was employed to elucidate the structure. Inter-residue correlations were determined by 1H, 1H NOESY and 1H, 13C heteronuclear multiple-bond correlation experiments. The PS is composed of tetrasaccharide repeating units with the following structure: [Formula: see text] Cross-peaks of low intensity from alpha-linked mannopyranosyl residues were present in the 1H, 1H TOCSY NMR spectra and further analysis of these showed that they originate from the terminal part of the polysaccharide. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-galactosamine residue at its reducing end. The repeating unit of the E. coli O176 O-antigen is similar to those from E. coli O17 and O77, thereby explaining the reported cross-reactivities between the strains, and identical to that of Salmonella cerro (O:6, 14, 18).  相似文献   

14.
2D [(13)C,(1)H] COSY NMR is used by the metabolic engineering community for determining (13)C-(13)C connectivities in intracellular compounds that contain information regarding the steady-state fluxes in cellular metabolism. This paper proposes innovations in the generation and analysis of these specific NMR spectra. These include a computer tool that allows accurate determination of the relative peak areas and their complete covariance matrices even in very complex spectra. Additionally, a method is introduced for correcting the results for isotopic non-steady-state conditions. The proposed methods were applied to measured 2D [(13)C,(1)H] COSY NMR spectra. Peak intensities in a one-dimensional section of the spectrum are frequently not representative for relative peak volumes in the two-dimensional spectrum. It is shown that for some spectra a significant amount of additional information can be gained from long-range (13)C-(13)C scalar couplings in 2D [(13)C,(1)H] COSY NMR spectra. Finally, the NMR resolution enhancement by dissolving amino acid derivatives in a nonpolar solvent is demonstrated.  相似文献   

15.
A polysaccharide containing the residues of 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn) was found in the cell wall of the Brevibacterium casei strain AEI Ac-2114T . The polymer structure was elucidated by analyzing one-dimensional spectra of 1H and 13C NMR and bidimentional experiments 1H/13C-COSY, TOCSY, 1H/13C-gHSQC, and 1H/13C-gHMBC. The polymer is built up of the 2--> 4-linked Kdn residues substituted by beta-D-Glcp residues at 8- and 9-hydroxyls; such a polymer with disubstituted Kdn residues was found for the first time. A glycosylated teichoic acid of the 1,3-poly(glycerophosphate) type was also identified among other anionic polymers of cell wall.  相似文献   

16.
The O-specific polysaccharide of Providencia rustigianii O14 was obtained by mild acid degradation of the LPS and studied by chemical methods and NMR spectroscopy, including 2D 1H,(1)H COSY, TOCSY, NOESY, and 1H,(13)C HSQC experiments. The polysaccharide was found to contain N (epsilon)-[(S)-1-carboxyethyl]-N(alpha)-(D-galacturonoyl)-L-lysine ('alaninolysine', 2S,8S-AlaLys). The amino acid component was isolated by acid hydrolysis and identified by 13C NMR spectroscopy and specific optical rotation, using synthetic diastereomers for comparison. The following structure of the trisaccharide repeating unit of the polysaccharide was established:Anti-P. rustigianii O14 serum was found to cross-react with O-specific polysaccharides of Providencia and Proteus strains that contains amides of uronic acid with N(epsilon)-[(R)-1-carboxyethyl]-L-lysine and L-lysine.  相似文献   

17.
The chemical structure and interactions of the cell wall polysaccharides from the red edible seaweed Palmaria palmata were studied by liquid-like magic-angle-spinning (MAS) and cross-polarization MAS (CPMAS) solid-state 13C NMR spectroscopy. The liquid-like MAS and CPMAS 13C NMR spectra of the rehydrated algal powder revealed the presence of beta-(1-->4)/beta-(1-->3)-linked D-xylan with chemical shifts close to those observed in the solution 13C NMR spectrum of the polysaccharide. Observation of mix-linked xylan in the liquid-like MAS 13C NMR spectrum indicated that part of this cell wall polysaccharide is loosely held in the alga. The CPMAS NMR spectrum of the dry algal powder alcohol insoluble residue (AIR) showed broad peaks most of which corresponded to the mix-linked xylan. Hydration of AIR induced a marked increase in the signal resolution also in the CPMAS NMR spectra together with a shift of the C-3 and C-4 signals of the (1-->3)- and (1-->4)-linked xylose, respectively. Such modifications were present in the spectrum of hydrated (1-->3)-linked xylan from the green seaweed Caulerpa taxifolia and absent in that of (1-->4)-linked xylan from P. palmata. This result emphasizes the important role of (1-->3) linkages on the mix-linked xylan hydration-induced conformational rearrangement. The mix-linked xylan signals were observed in the CPMAS NMR spectrum of hydrated residues obtained after extensive extractions by NaOH or strong chaotropic solutions indicating strong hydrogen bonds or covalent linkages. T(1 rho) relaxations were measured close or above 10 ms for the mix-linked xylan in the dry and hydrated state in AIR and indicated that the overall xylan chains likely remain rigid. Rehydration of the mix-linked xylan lead to a decrease in the motion of protons bounded to the C-1 and C-4 carbons of the (1-->4)-linked xylose supporting the re-organization of the xylan chains under hydration involving junction-zones held by hydrogen bonds between adjacent (1-->4)-linked xylose blocks. The CPMAS NMR spectrum of both dry and rehydrated residues obtained after NaOH and HCl extractions demonstrated the presence of cellulose and (1-->4)-linked xylans. The structures of the different polysaccharides are discussed in relation to their interactions and putative functions on the cell wall mechanical properties in P. palmata.  相似文献   

18.
The structure of the O-antigen polysaccharide of the lipopolysaccharide from the enteroinvasive Escherichia coli O136 has been elucidated. The composition of the repeating unit was established by sugar and methylation analysis together with 1H and 13C NMR spectroscopy. Two-dimensional nuclear Overhauser effect spectroscopy (NOESY) and heteronuclear multiple-bond correlation experiments were used to deduce the sequence. The absolute configuration for the nonulosonic acid (NonA) could be determined using spin-spin coupling constants, 13C chemical shifts and NOESY. The anomeric configuration of the NonA was determined via vicinal and geminal 13C,1H coupling constants. The structure of the repeating unit of the polysaccharide from E. coli O136 is as follows, in which beta-NonpA is 5,7-diacetamido-3,5,7, 9-tetradeoxy-Lglycero-beta-Lmanno-nonulosonic acid: -->4)-beta-NonpA-(2-->4)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->  相似文献   

19.
Lovely AE  Wenzel TJ 《Chirality》2008,20(3-4):370-378
Enantiomeric discrimination is observed in the 1H and 13C NMR spectra of secondary and tertiary amines in the presence of (-)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (1). Nonequivalence of the resonances of prochiral nuclei in primary and secondary amines is also observed when they associate with 1. The amines are added in their neutral form and are protonated by the carboxylic acid groups of 1 to produce the corresponding ammonium and carboxylate ions. Secondary amines associate with 1 through two hydrogen bonds and an ion pair interaction. Tertiary amines can only form one hydrogen bond to accompany the ion pairing. Chiral discrimination in the 1H and 13C NMR spectra of a series of aryl-containing secondary amines is of sufficient magnitude to determine enantiomeric purities. The discrimination in the spectra of tertiary amines with 1 is smaller, but 13C NMR spectra provided enough distinction for the determination of enantiomeric purity.  相似文献   

20.
Tuffal  G; Albigot  R; Riviere  M; Puzo  G 《Glycobiology》1998,8(7):675-684
The specific mycobacterial methyl polysaccharides 3- O -methyl mannose polysaccharide (MMP) and the 6- O -methyl glucose lipopolysaccharides (MGLPs) were shown to modulate the fatty acid biosynthesis by the mycobacterial fatty acid synthetase I (FAS I). This activity is attributed to their fatty acid complexing properties allowing the release of the neo synthesized fatty acyl chain from the enzyme and probably their transport in the cell. To elucidate, at a molecular level, the mechanism of this unusual kind of polysaccharide-lipid biological interaction, we first analyzed, by mass spectrometry and proton nuclear magnetic resonance (1H NMR) spectroscopy, the structure of the polysaccharidic backbone (MGPs) of the MGLPs from Mycobacterium bovis BCG. This work reveals that this strain produces a new kind of MGP containing an unusual monosaccharide never described in the mycobacterial genus: a 2- N -acetyl-2,6-dideoxy-beta-glucopyranosyl. In addition,1H NMR data afforded evidence for the revision of three glycosidic linkages described previously. These modifications affect mainly the reducing end tetrasaccharide and have great consequences on the previously proposed molecular model of the MGP.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号