首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Some pan-histone-deacetylase (HDAC) inhibitors have recently been reported to exert their anti-leukemia effect by inhibiting the activity of class IIB HDAC6, which is the deacetylase of Hsp90 and α-tubulin, thereby leading to hyperacetylation of Hsp90, disruption of its chaperone function and apoptosis. In this study, we compared the effect of a class I HDAC inhibitor FK228 with the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) on the Hsp90 chaperone function of K562 cells. We demonstrated that, although having a weaker inhibitory effect on HDAC6, FK228 mediated a similar disruption of Hsp90 chaperone function compared to SAHA. Unlike SAHA, FK228 did not mediate hyperacetylation of Hsp90, instead the acetylation of Hsp70 was increased and Bcr-Abl was increasingly associated with Hsp70 rather than Hsp90, forming an unstable complex that promotes Bcr-Abl degradation. These results indicated that FK228 may disrupt the function of Hsp90 indirectly through acetylation of Hsp70 and inhibition of its function.  相似文献   

2.
3.
Histone deacetylase 6 (HDAC6) inhibition, recently, has been shown to promote the acetylation of heat-shock protein 90 (Hsp90) and disrupt its chaperone function. Her-2 oncoprotein is identified as a client protein of Hsp90. Therefore, in this study we examined the effect of carbamazepine, which could inhibit HDAC on Hsp90 acetylation and Her-2 stability. The results of this study demonstrate that while carbamazepine had no effect on the Her-2 mRNA level, it induced Her-2 protein degradation via the proteasome pathway by disrupting the chaperone function of Hsp90 in SK-BR-3 cells. Mechanistically, carbamazepine could enhance the acetylation of α-tubulin, indicating its inhibitory effect on HDAC6. Functionally, carbamazepine could synergize with trastuzumab or geldanamycin to promote Her-2 degradation and inhibit breast cancer cell proliferation. Thus, this study has potential clinical implications by providing a promising strategy to overcome the development of resistance against trastuzumab therapy for breast cancer.  相似文献   

4.
Histone deacetylases (HDAC) play a critical role in chromatin modification and gene expression. Recent evidence indicates that HDACs can also regulate functions of nonhistone proteins by catalyzing the removal of acetylated lysine residues. Here, we show that the HDAC inhibitor LBH589 down-regulates DNA methyltransferase 1 (DNMT1) protein expression in the nucleus of human breast cancer cells. Cotreatment with the proteasomal inhibitor MG-132 abolishes the ability of LBH589 to reduce DNMT1, suggesting that the proteasomal pathway mediates DNMT1 degradation on HDAC inhibition. Deletion of the NH(2)-terminal 120 amino acids of DNMT1 diminishes LBH589-induced ubiquitination, indicating that this domain is essential for its proteasomal degradation. DNMT1 recruits the molecular chaperone heat shock protein 90 (Hsp90) to form a chaperone complex. Treatment with LBH589 induces hyperacetylation of Hsp90, thereby inhibiting the association of DNMT1 with Hsp90 and promoting ubiquitination of DNMT1. In addition, inactivation of HDAC1 activity by small interfering RNA and MS-275 is associated with Hsp90 acetylation in conjunction with reduction of DNMT1 protein expression. We conclude that the stability of DNMT1 is maintained in part through its association with Hsp90. Disruption of Hsp90 function by HDAC inhibition is a unique mechanism that mediates the ubiquitin-proteasome pathway for DNMT1 degradation. Our studies suggest a new role for HDAC1 and identify a novel mechanism of action for the HDAC inhibitors as down-regulators of DNMT1.  相似文献   

5.
Estrogen has a variety of neuroprotective effects but the molecular basis of its function is still mainly unclear. Estrogen receptor (ER) signaling is highly dependent on posttranslational modifications and the assembly of coactivator and corepressor complexes. Several proteins involved in ERα signaling have recently been found to be acetylated, including ERα itself and Hsp90, a key chaperone in the functional regulation of ERα. ERα complexes also contain histone deacetylases (HDAC) which repress transactivation. Our purpose was to clarify the role of protein acetylation and Hsp90 function in the ERE-mediated ERα signaling in neuronal HN10 cells. We observed that increasing protein/histone acetylation status with trichostatin A, a potent HDAC inhibitor, increased the 17β-estradiol (E2)-induced transactivation of ERE-driven luciferase in non-transfected cells, and even more extensively in pERα-transfected cells. E2-induced ERE-driven transactivation was blocked by ICI 182.780. Several ER antagonists, such as raloxifene and tamoxifen, were unresponsive. Valproate, an antiepileptic drug which is recently characterized as a HDAC inhibitor, was also able to potentiate the E2-induced ERE-transactivation. Inhibition of the function of Hsp90 chaperone with geldanamycin strongly inhibited the E2-induced ERE-transactivation. Overexpression of SIRT2 protein deacetylase did not inhibit the acetylation-potentiated ERE-driven transactivation indicating that SIRT2 deacetylase is not involved in ERα signaling. Our results reveal that ERα signaling is dependent on protein acetylation and epigenetic regulation.  相似文献   

6.
The hydroxamic acid (HAA) analogue pan-histone deacetylase (HDAC) inhibitors (HDIs) LAQ824 and LBH589 have been shown to induce acetylation and inhibit the ATP binding and chaperone function of heat shock protein (HSP) 90. This promotes the polyubiquitylation and degradation of the pro-growth and pro-survival client proteins Bcr-Abl, mutant FLT-3, c-Raf, and AKT in human leukemia cells. HDAC6 is a member of the class IIB HDACs. It is predominantly cytosolic, microtubule-associated alpha-tubulin deacetylase that is also known to promote aggresome inclusion of the misfolded polyubiquitylated proteins. Here we demonstrate that in the Bcr-abl oncogene expressing human leukemia K562 cells, HDAC6 can be co-immunoprecipitated with HSP90, and the knock-down of HDAC6 by its siRNA induced the acetylation of HSP90 and alpha-tubulin. Depletion of HDAC6 levels also inhibited the binding of HSP90 to ATP, reduced the chaperone association of HSP90 with its client proteins, e.g. Bcr-Abl, and induced polyubiquitylation and partial depletion of Bcr-Abl. Conversely, the ectopic overexpression of HDAC6 inhibited LAQ824-induced acetylation of HSP90 and alpha-tubulin and reduced LAQ824-mediated depletion of Bcr-Abl, AKT, and c-Raf. Collectively, these findings indicate that HDAC6 is also an HSP90 deacetylase. Targeted inhibition of HDAC6 leads to acetylation of HSP90 and disruption of its chaperone function, resulting in polyubiquitylation and depletion of pro-growth and pro-survival HSP90 client proteins including Bcr-Abl. Depletion of HDAC6 sensitized human leukemia cells to HAA-HDIs and proteasome inhibitors.  相似文献   

7.
8.
9.
Molecular chaperones, as the name suggests, are involved in folding, maintenance, intracellular transport, and degradation of proteins as well as in facilitating cell signaling. Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone that carries out these processes in normal and cancer cells. Hsp90 function in vivo is coupled to its ability to hydrolyze ATP and this can be regulated by co-chaperones and post-translational modifications. In this review, we explore the varied roles of known post-translational modifications of cytosolic and nuclear Hsp90 (phosphorylation, acetylation, S-nitrosylation, oxidation and ubiquitination) in fine-tuning chaperone function in eukaryotes. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

10.
Heat shock protein 90α plays a key role in myosin folding and thick filament assembly in muscle cells. To assess the structure and function of Hsp90α and its potential regulation by post-translational modification, we developed a combined knockdown and rescue assay in zebrafish embryos to systematically analyze the effects of various mutations on Hsp90α function in myosin thick filament organization. DNA constructs expressing the Hsp90α1 mutants with altered putative ATP binding, phosphorylation, acetylation or methylation sites were co-injected with Hsp90α1 specific morpholino into zebrafish embryos. Myosin thick filament organization was analyzed in skeletal muscles of the injected embryos by immunostaining. The results showed that mutating the conserved D90 residue in the Hsp90α1 ATP binding domain abolished its function in thick filament organization. In addition, phosphorylation mimicking mutations of T33D, T33E and T87E compromised Hsp90α1 function in myosin thick filament organization. Similarly, K287Q acetylation mimicking mutation repressed Hsp90α1 function in myosin thick filament organization. In contrast, K206R and K608R hypomethylation mimicking mutations had not effect on Hsp90α1 function in thick filament organization. Given that T33 and T87 are highly conserved residues involved post-translational modification (PTM) in yeast, mouse and human Hsp90 proteins, data from this study could indicate that Hsp90α1 function in myosin thick filament organization is potentially regulated by PTMs involving phosphorylation and acetylation.  相似文献   

11.
Posttranslational modifications play important roles in regulating protein structure and function. Histone deacetylase 6 (HDAC6) is a mostly cytoplasmic class II HDAC, which has a unique structure with two catalytic domains and a domain binding ubiquitin with high affinity. This enzyme was recently identified as a multisubstrate protein deacetylase that can act on acetylated histone tails, alpha-tubulin and Hsp90. To investigate the in vivo functions of HDAC6 and the relevance of tubulin acetylation/deacetylation, we targeted the HDAC6 gene by homologous recombination in embryonic stem cells and generated knockout mice. HDAC6-deficient mice are viable and fertile and show hyperacetylated tubulin in most tissues. The highest level of expression of HDAC6 is seen in the testis, yet development and function of this organ are normal in the absence of HDAC6. Likewise, lymphoid development is normal, but the immune response is moderately affected. Furthermore, the lack of HDAC6 results in a small increase in cancellous bone mineral density, indicating that this deacetylase plays a minor role in bone biology. HDAC6-deficient mouse embryonic fibroblasts show apparently normal microtubule organization and stability and also show increased Hsp90 acetylation correlating with impaired Hsp90 function. Collectively, these data demonstrate that mice survive well without HDAC6 and that tubulin hyperacetylation is not detrimental to normal mammalian development.  相似文献   

12.
The molecular chaperone protein Hsp90 is a key regulator of approximately 100 'client' proteins crucial for numerous cell signaling processes. Consequently, understanding the molecular underpinnings that regulate Hsp90 activity is an important biological endeavor. Exciting new results now suggest that, at least for nuclear receptor activity, Hsp90 function is directly regulated by histone deacetylase 6 (HDAC6). These observations have consequences for various biological processes and potentially important implications for the development of cancer therapeutics.  相似文献   

13.
14.
Antibodies to histone deacetylases (HDACs) have been used to immuno-isolate deacetylase complexes from HeLa cell extracts. Complexes shown to contain HDAC1, HDAC3, HDAC6, and HDAC1+2 as their catalytic subunits have been used in an antibody-based assay that detects deacetylation of whole histones at defined lysines. The class II deacetylase HDAC6 was inactive in this assay, but the three class I enzymes deacetylated all histone lysines tested, although with varying efficiency. In comparison to HDAC1, HDAC3 preferentially deacetylated lysines 5 and 12 of H4 and lysine 5 of H2A. H4 tails in purified mononucleosomes were refractory to deacetylation by both HDAC1 and HDAC3, unless ATP was added to the reaction mix. Surprisingly, ATP also consistently enhanced cleavage of free, non-nucleosomal histones, but not small peptides, by both enzyme complexes. We found no evidence that ATP operates by phosphorylation of components of the HDAC complex, but have shown that HDACs 1, 2, and 3 all co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. Another common ATP-dependent chaperone, Hsp90, was absent from all HDAC complexes tested, whereas Hsp60 associated with HDAC1 only. We suggest that Hsp chaperone proteins enhance the deacetylase activity of HDAC complexes by ATP-dependent manipulation of protein substrates.  相似文献   

15.
Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes that plays a vital role in protecting and maintaining the functional integrity of deregulated signaling proteins in tumors. We have previously reported that the stability and activity of the mitotic checkpoint kinase Mps1 depend on Hsp90. In turn, Mps1-mediated phosphorylation Hsp90 regulates its chaperone function and is essential for the mitotic arrest. Cdc14-assisted dephosphorylation of Hsp90 is vital for the mitotic exit. Post-translational regulation of Hsp90 function is also known as the Hsp90 “Chaperone Code.” Here, we demonstrate that only the active Mps1 is ubiquitinated on K86, K827, and K848 by the tumor suppressor von Hippel-Lindau (VHL) containing E3 enzyme, in a prolyl hydroxylation-independent manner and degraded in the proteasome. Furthermore, we show that this process regulates cell exit from the mitotic checkpoint. Collectively, our data demonstrates an interplay between the Hsp90 chaperone and VHL degradation machinery in regulating mitosis.  相似文献   

16.
Heat shock protein 90 (Hsp90) is an essential molecular chaperone whose activity is regulated not only by cochaperones but also by distinct posttranslational modifications. We report here that casein kinase 2 phosphorylates a conserved threonine residue (T22) in α helix-1 of the yeast Hsp90 N-domain both in?vitro and in?vivo. This α helix participates in?a hydrophobic interaction with the catalytic loop in Hsp90's middle domain, helping to stabilize the chaperone's ATPase-competent state. Phosphomimetic mutation of this residue alters Hsp90 ATPase activity and chaperone function and impacts interaction with the cochaperones Aha1 and Cdc37. Overexpression of Aha1 stimulates the ATPase activity, restores cochaperone interactions, and compensates for the functional defects of these Hsp90 mutants.  相似文献   

17.
Hsp90 (Heat Shock Protein 90) is a component of the inactive and metastable hetero-oligomeric structure of steroid receptors. Recent data on Hsp90 structure and function as a stress protein and dedicated molecular chaperone are here reviewed with a particular focus on Hsp90 chaperone cycle interfering with steroid receptor action. The dual role of Hsp90 as a positive and negative modulator of steroid receptor function is considered along the activation-desactivation process of the receptors. It is proposed that Hsp90 chaperone machinery assists the receptor during its synthesis thus avoiding collapse and facilitating an open structure able to bind ligand efficiently. Moreover, it is suggested that Hsp90 may help the folding of the hydrophobic core of the receptor around the ligand and finally Hsp90 may chaperone the receptor after the dissociation of the ligand.  相似文献   

18.
We have previously shown that the proteasome activator PA28 is essential to Hsp90-dependent protein refolding in vitro, where PA28 mediates transfer of the Hsp90-bound substrate protein to the Hsc70/Hsp40 chaperone machine for its correct refolding. This observation suggests that PA28 may also collaborate with Hsp90 in cells. To examine this possibility, here we have used double-stranded RNA interference (RNAi) against PA28 in Caenorhabditis elegans mutants of daf-21, which encodes Hsp90. We show that C. elegans PA28 facilitates Hsp90-initiated protein refolding, albeit with an activity lower than that of mouse PA28 proteins. RNAi-mediated knockdown of PA28 significantly suppresses the Daf-c (dauer formation constitutive) phenotype of the daf-21 mutant, but it has no affect on the distinct defects of this mutant in sensing odorants. Taking these results together, we conclude that PA28 is likely to function in collaboration with Hsp90 in vivo.  相似文献   

19.
Phosphorylation of heat shock protein 20 (Hsp20) by protein kinase A (PKA) is now recognized as an important regulatory mechanism modulating contractile activity in the human myometrium. Thus agonists that stimulate cyclic AMP production may cause relaxation with resultant beneficial effects on pathologies that affect this tissue such as the onset of premature contractions prior to term. Here we describe for the first time that acetylation of Hsp20 is also a potent post-translational modification that can affect human myometrial activity. We show that histone deacetylase 8 (HDAC8) is a non-nuclear lysine deacetylase (KDAC) that can interact with Hsp20 to affect its acetylation. Importantly, use of a selective linkerless hydroxamic acid HDAC8 inhibitor increases Hsp20 acetylation with no elevation of nuclear-resident histone acetylation nor marked global gene expression changes. These effects are associated with significant inhibition of spontaneous and oxytocin-augmented contractions of ex vivo human myometrial tissue strips. A potential molecular mechanism by which Hsp20 acetylation can affect myometrial activity by liberating cofilin is described and further high-lights the use of specific effectors of KDACs as therapeutic agents in regulating contractility in this smooth muscle.  相似文献   

20.
Histone deacetylase 6 (HDAC6) is a cytoplasmic deacetylase that uniquely catalyzes α-tubulin deacetylation and promotes cell motility. However, the mechanism underlying HDAC6-dependent cell migration and the role for microtubule acetylation in motility are not known. Here we show that HDAC6-induced global microtubule deacetylation was not sufficient to stimulate cell migration. Unexpectedly, in response to growth factor stimulation, HDAC6 underwent rapid translocation to actin-enriched membrane ruffles and subsequently became associated with macropinosomes, the vesicles for fluid-phase endocytosis. Supporting the importance of these associations, membrane ruffle formation, macropinocytosis, and cell migration were all impaired in HDAC6-deficient cells. Conversely, elevated HDAC6 levels promoted membrane ruffle formation with a concomitant increase in macropinocytosis and motility. In search for an HDAC6 target, we found that heat shock protein 90 (Hsp90), another prominent substrate of HDAC6, was also recruited to membrane ruffles and macropinosomes. Significantly, inhibition of Hsp90 activity suppressed membrane ruffling and cell migration, while expression of an acetylation-resistant Hsp90 mutant promoted ruffle formation. Our results uncover a surprising role for HDAC6 in actin remodeling-dependent processes and identify the actin cytoskeleton as an important target of HDAC6-regulated protein deacetylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号