首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific cephalosporin C production of Acremonium chrysogenum grown on a glucose-based minimal medium using conventional batch and dialysis membrane reactor systems was independent of the cell density in the range of 0.4 to 40 g biomass l–1.  相似文献   

2.
Deacetoxy/deacetylcephalosporin C synthase (acDAOC/DACS) from Acremonium chrysogenum is a bifunctional enzyme that catalyzes both the ring-expansion of penicillin N to deacetoxycephalosporin C and the hydroxylation of the latter to deacetylcephalosporin C. The R308 residue located in close proximity to the C-terminus of acDAOC/DACS was mutated to the other 19 amino acids. In the resulting mutant pool, R308L, R308I, R308T and R308V showed significant improvement in their ability to convert penicillin analogs, thus confirming the role of R308 in controlling substrate selectivity, the four amino acids all possess short aliphatic sidechains that may improve hydrophobic interactions with the substrates. The mutant R308I showed the highest reactivity for penicillin G, with 3-fold increase in kcat/Km ratio and 7-fold increase in relative activity.  相似文献   

3.
We have developed an efficient expression system for foreign genes in Acremonium chrysogenum. After inserting the foreign gene between the phosphoglycerate kinase (PGK) promoter and a terminator derived from A. chrysogenum, multiple copies of this expression unit are tandemly ligated into cosmids and the resultant cosmids are introduced into A. chrysogenum.

We expressed Pseudomonas cephalosporin C acylase and a human thrombomodulin mutant protein containing the fourth, fifth, and sixth epidermal growth factor (EGF)-like structures (E456). The acylase activity in the transformants obtained using our system was several times higher than that in the transformants without the use of the system. The acylase proteins expressed had enzymatic and immunochemical properties identical to those of authentic acylase. The transformants with the expression plasmid for E456 secreted biologically active E456 protein into the culture medium. The amino terminal sequence of the purified E456 was identical to that of recombinant E456 obtained using mammalian cells.  相似文献   

4.
The biosynthesis of cephalosporins involving a thiozolidine ring expansion is catalyzed by deacetoxycephalosporin C synthase (DAOCS). In this study, three DAOCS isozymes were cloned and expressed as active enzymes together with Streptomyces jumonjinensis DAOCS that was newly isolated and partially characterized. The enzymes showed excellent substrate conversion for penicillin G, phenethicillin, ampicillin and carbenicillin, but they were less effective in the ring expansion of penicillin V, amoxicillin and metampicillin. Streptomyces clavuligerus DAOCS was the most active among the recombinant enzymes. The results also showed that truncation of 20 amino acids at the C-terminus of the Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase polypeptide did not affect penicillin ring expansion.  相似文献   

5.
头孢菌素类抗牛素是临床用途最广的抗感染药物,其工业生产的重要中间体7-氨基头孢烷酸(7-ACA)采用顶头孢霉发酵产物头孢菌素C为前体,通过化学合成或两步酶法狭得。介绍了在了解头孢菌素C生物合成的前提下,在建赢了顶头孢霉的遗传改造丛础上,运用合成生物学的知识,在头孢菌素C产生菌顶头孢霉中分别构建了三个头孢菌素C酰化酶的表达框架,通过发酵产物的分析并优选表达框架后,再采用传统发酵工艺的优化获得了一株可以直接发酵7-ACA的高产顶头孢霉工程菌。  相似文献   

6.
顶头孢霉遗传育种研究进展   总被引:1,自引:0,他引:1  
Hu YJ  Zhu BQ 《遗传》2011,33(10):1079-1086
顶头孢霉是一类重要的工业微生物,其发酵产物头孢菌素C可用来生产7-ACA,而后者是临床常用抗感染药物头孢类抗生素的重要中间体。头孢菌素C的发酵水平决定了其下游头孢类抗生素的生产水平、产品质量及价格,因此对顶头孢霉的菌种选育工作显得尤其迫切。随着分子生物学的发展,基因工程分子改造在遗传育种领域发挥着越来越重要的作用。文章综述了对头孢菌素C的生物合成以及调控的研究进展,并将国内外对顶头孢霉进行遗传育种的结果进行了归纳总结,提出了可以从提高头孢菌素C发酵水平、延伸代谢途径等不同方面对头孢菌素C生物合成及调控基因,包括外源基因的导入和表达进行改造优化,并对进一步的研究目标进行了展望,认为可以结合比较蛋白质组和基因组改组使遗传育种所获得的工程菌尽快进入产业化。  相似文献   

7.
Aims: To investigate the effect of pH regulation and nutrient concentration on cephalosporin C (CPC) production in solid‐state fermentation (SSF), using sugarcane bagasse as inert support, impregnated with liquid medium. Methods and Results: Solid‐state fermentation using different initial pH values, buffer and nutrient concentrations were performed. Results revealed pH as a key parameter in CPC SSF, as it hampered the antibiotic production not only above 7·8, but also under 6·4. Using initial pH lower than 6·8 and PB in the solid medium, it was possible to keep pH within the production range, increase the production period (from 1 to 3 days) and hence the CPC yield from 468 to 3200 μg gdm?1 (g?1 of dry matter). Conclusion: Parameters that help to keep pH in adequate values for CPC production in SSF, such as initial pH, buffering system and nutrient concentration, can greatly increase the production time and CPC yields in this fermentation technique. Significance and Impact of the Study: This is the first work on CPC production on impregnated support, and the only one revealing pH as a key parameter; it is also shown that high nutrient concentration can improve CPC yields in SSF as long as pH is kept under control.  相似文献   

8.
Here we investigated the effect of pioglitazone, a peroxisome proliferator-activated receptor (PPAR)-gamma ligand, on early-phase hepatic fibrogenesis in vivo caused by acute carbon tetrachloride (CCl(4)) administration in the rat. Pioglitazone (1 mg/kg BW) prevented pericentral fibrosis and induction of alpha-smooth muscle actin (SMA) 72 h after CCl(4) administration (1 ml/kg BW). CCl(4) induction of alpha1(I)procollagen mRNA in the liver was blunted by pioglitazone to the levels almost 2/3 of CCl(4) alone. Pioglitazone also prevented CCl(4)-induced hepatic inflammation and necrosis, as well as increases in serum tumor necrosis factor-alpha levels. Further, pioglitazone inhibited the induction of alphaSMA and type I collagen in primary cultured hepatic stellate cells in a dose-dependent manner. In conclusion, pioglitazone inhibits both hepatic inflammation and activation of hepatic stellate cells, thereby ameliorating early-phase fibrogenesis in the liver following acute CCl(4).  相似文献   

9.
Deacetylcephalosporin C acetyltransferase (DAC-AT) catalyses the last step in the biosynthesis of cephalosporin C, a broad-spectrum β-lactam antibiotic of large clinical importance. The acetyl transfer step has been suggested to be limiting for cephalosporin C biosynthesis, but has so far escaped detailed structural analysis. We present here the crystal structures of DAC-AT in complexes with reaction intermediates, providing crystallographic snapshots of the reaction mechanism. The enzyme is found to belong to the α/β hydrolase class of acetyltransferases, and the structures support previous observations of a double displacement mechanism for the acetyl transfer reaction in other members of this class of enzymes. The structures of DAC-AT reported here provide evidence of a stable acyl-enzyme complex, thus underpinning a mechanism involving acetylation of a catalytic serine residue by acetyl coenzyme A, followed by transfer of the acetyl group to deacetylcephalosporin C through a suggested tetrahedral transition state.  相似文献   

10.
利用氯化苄分别从真菌顶头孢(Cephalosporium acremonium)和产黄头孢(Acremonium chrysogenum)中提取总DNA,通过PCR方法扩增脱乙酰氧基头孢菌素C合成酶/羟化酶基因cefEF,结果只能从黄头孢DNA趸扩增出cefEF基因。测序结果表明,其与已报道的基因序列只有3个碱基的差异,推断的氨基酸序列只有2个氨基酸有差异,并未涉及活性中心。同时表明,国外指所指的与该酶有关的顶头孢(Cephalosporium acremonium或Acremonium chryso-geum)对应的是国内的产黄头孢(Acremonium chrysogenum)。  相似文献   

11.
12.
A recombinant fungal microorganism capable of producing deacetylcephalosporin C was constructed by transforming a cephalosporin C esterase gene from Rhodosporidium toruloides into Acremonium chrysogenum. The cephalosporin C esterase gene can be expressed from its endogenous R. toruloides promoter or from the Aspergillus nidulans trpC promoter under standard Acremonium chrysogenum fermentation conditions. The expression of an active cephalosporin C esterase enzyme in A. chrysogenum results in the conversion of cephalosporin C to deacetylcephalosporin C in vivo, a novel fermentation process for the production of deacetylcephalosporin C. The stability of deacetylcephalosporin C in the fermentation broth results in a 40% increase in the cephalosporin nucleus.  相似文献   

13.
Cephalosporin C (CPC) fermentation by Acremonium chrysogenum featured with two major problems: (1) high raw materials cost (low CPC yield from soybean oil) and (2) low oxygen transfer rate between gaseous/aqueous phases leading to low CPC productivity and quality instability of CPC fermentation product due to the accumulation of deacetoxycephalosporin C (DAOC). To solve the problems, in this study, we proposed a novel DO-Stat based co-substrates feeding strategy by simultaneously supplementing soybean oil and glucose, and testified the effectiveness of the strategy in a 7 L bioreactor. The CPC fermentation performance were significantly improved when co-feeding soybean oil and glucose at a weight ratio of 1:0.7, as compared with those when feeding pure soybean oil: (1) final CPC concentration and yield reached higher levels of 37 g/L and 23.5%, the increments were 46% and 82%, respectively; (2) oxygen transfer rate was largely improved, oil consumption rate and CPC productivity were enhanced by 31% and 136%, respectively; and (3) DO could be controlled at adequately high levels so that DAOC accumulation could be minimized and the quality of CPC fermentation product be ensured. The proposed strategy showed application potential in improving the economics of industrial CPC productions.  相似文献   

14.
15.
The scale‐up of fermentation processes frequently leads to a reduced productivity compared to small‐scale screening experiments. Large‐scale mixing limitations that lead to gradients in substrate and oxygen availability could influence the microorganism performance. Here, the impact of substrate gradients on a penicillin G producing Penicillium chrysogenum cultivation was analyzed using an intermittent glucose feeding regime. The intermittent feeding led to fluctuations in the extracellular glucose concentration between 400 μM down to 6.5 μM at the end of the cycle. The intracellular metabolite concentrations responded strongly and showed up to 100‐fold changes. The intracellular flux changes were estimated on the basis of dynamic 13C mass isotopomer measurements during three cycles of feast and famine using a novel hybrid modeling approach. The flux estimations indicated a high turnover of internal and external storage metabolites in P. chrysogenum under feast/famine conditions. The synthesis and degradation of storage requires cellular energy (ATP and UTP) in competition with other cellular functions including product formation. Especially, 38% of the incoming glucose was recycled once in storage metabolism. This result indicated that storage turnover is increased under dynamic cultivation conditions and contributes to the observed decrease in productivity compared to reference steady‐state conditions.  相似文献   

16.
不同亚型一氧化氮合酶在脑缺血/再灌注早期的表达变化   总被引:1,自引:0,他引:1  
目的:观察脑缺血/再灌注(CI/R)早期缺血区脑组织的内皮型一氧化氮合酶(eNOS)与神经型一氧化氮合酶(nNOS)表达的变化。方法:健康wistar大鼠60只,体重200~280g,由中国医科大学动物中心提供,雌雄各半。随机分为6组(n=10):假手术组、缺血1h组、缺血2h组、再灌注0.5h组、再灌注1h组、再灌注2h组。采用线栓法制作大鼠CI/R模型,免疫组化方法检测缺血区脑组织的eNOS与nNOS蛋白表达情况。结果:与假手术组比较,CI/R模型大鼠脑组织血管内皮细胞内eNOS表达在缺血1h内升高,之后到再灌注2h内持续降低。而nNOS的表达在缺血到再灌注2h内持续上升。结论:CI/R模型中缺血区脑组织的eNOS与nNOS的变化趋势不同,表明一氧化氮在缺血性脑损伤病理过程的作用与一氧化氮合酶亚型的变化有关。  相似文献   

17.
Protein kinase B (Akt/PKB) is a Ser/Thr kinase that is involved in the regulation of cell proliferation/survival through mammalian target of rapamycin (mTOR) and the regulation of glycogen metabolism through glycogen synthase kinase 3beta (GSK-3beta) and glycogen synthase (GS). Rapamycin is an inhibitor of mTOR. The objective of this study was to investigate the effects of rapamycin pretreatment on the insulin mediated phosphorylation of Akt/PKB phosphorylation and GS activity in parental HepG2 and HepG2 cells with overexpression of constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB). Rapamycin pretreatment resulted in a decrease (20-30%) in the insulin mediated phosphorylation of Akt1 (Ser 473) in parental HepG2 cells but showed an upregulation of phosphorylation in HepG2-CA-Akt/PKB cells. Rictor levels were decreased (20-50%) in parental HepG2 cells but were not significantly altered in the HepG2-CA-Akt/PKB cells. Furthermore, rictor knockdown decreased the phosphorylation of Akt (Ser 473) by 40-60% upon rapamycin pretreatment. GS activity followed similar trends as that of phosphorylated Akt and so with rictor levels in these cells pretreated with rapamycin; parental HepG2 cells showed a decrease in GS activity, whereas as HepG2-CA-Akt/PKB cells showed an increase in GS activity. The changes in the levels of phosphorylated Akt/PKB (Ser 473) correlated with GS and protein phoshatase-1 activity.  相似文献   

18.
Here we report that the widely used protein kinase C inhibitors, bisindolylmaleimide I and IX, are potent inhibitors of glycogen synthase kinase-3 (GSK-3). Bisindolylmaleimide I and IX inhibited GSK-3 in vitro, when assayed either in cell lysates (IC(50) 360 nM and 6.8 nM, respectively) or in GSK-3beta immunoprecipitates (IC(50) 170 nM and 2.8 nM, respectively) derived from rat epididymal adipocytes. Pretreatment of adipocytes with bisindolylmaleimide I (5 microM) and IX (2 microM) reduced GSK-3 activity in total cell lysates, to 25.1+/-4.3% and 12.9+/-3.0% of control, respectively. By contrast, bisindolylmaleimide V (5 microM), which lacks the functional groups present on bisindolylmaleimide I and IX, had little apparent effect. We propose that bisindolylmaleimide I and IX can directly inhibit GSK-3, and that this may explain some of the previously reported insulin-like effects on glycogen synthase activity.  相似文献   

19.
In whole mounts of seminiferous tubules of C3H/101 F1 hybrid mice, spermatogonia were counted in various stages of the epithelial cycle. Furthermore, the total number of Sertoli cells per testis was estimated using the disector method. Subsequently, estimates were made of the total numbers of the different spermatogonial cell populations per testis.

The results of the cell counts indicate that the undifferentiated spermatogonia are actively proliferating from stage XI until stage IV. Three divisions of the undifferentiated spermatogonia are needed to obtain the number of A1 plus undifferentiated spermatogonia produced each epithelial cycle. Around stage VIII almost two-thirds of the Apr and all of the Aal spermatogonia differentiate into A1 spermatogonia. It was estimated that there are 2.5 × 106 differentiating spermatogonia and 3.3 × 105 undifferentiated spermatogonia per testis. There are about 35,000 stem cells per testis, constituting about 0.03% of all germ cells in the testis. It is concluded that the undifferentiated spermatogonia, including the stem cells, actively proliferate during about 50% of the epithelial cycle.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号