首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seed dispersal by animals is an important ecological process shaping plant regeneration. In general, seed dispersers are highly variable and often opportunistic in their fruit choice. Despite much research, the factors that can explain patterns of fruit consumption among different animal groups remain contentious. Here, we analysed the interactions between 81 animal species feeding on the fruits of 30 plant species in Kakamega Forest, Kenya, during 840 h of observations. Our aim was to determine whether plant characteristics, fruit morphology, fruit colours and/or fruit compounds such as water, sugar, phenols and tannins explained the relative importance of fruit consumption by the two most important consumer groups, primates and birds. We found significant differences in fruit choice between both groups. Primates fed on larger fruits and on higher trees that had larger fruit crops, whereas birds were observed feeding on smaller fruits and on smaller plants producing fewer fruits. Fruit colours did not differ between fruits consumed by primates and those consumed by birds. However, differences in the fruit choice among frugivorous birds were associated with differences in fruit colours. Smaller plants with smaller fruits produced red fruits which contrasted strongly with the background; these fruits were dispersed by a distinct set of bird species. The contents of water, sugar, phenols and tannins did not differ between fruits eaten by primates and those eaten by birds. Some phylogenetic patterns were apparent; primates fed preferentially on a phylogenetically restricted subsample of large plants with large fruits of the subclass Rosidae. We discuss why the observed primate dispersal syndrome is most likely explained by a process of ecological fitting.  相似文献   

2.
Human‐induced fragmentation and disturbance of natural habitats can shift abundance and composition of frugivore assemblages, which may alter patterns of frugivory and seed dispersal. However, despite their relevance to the functioning of ecosystems, plant‐frugivore interactions in fragmented areas have been to date poorly studied. I investigated spatial variation of avian frugivore assemblages and fruit removal by dispersers and predators from Mediterranean myrtle shrubs (Myrtus communis) in relation to the degree of fragmentation and habitat features of nine woodland patches (72 plants). The study was conducted within the chronically fragmented landscape of the Guadalquivir Valley (SW Spain), characterized by ~1% of woodland cover. Results showed that the abundance and composition of the disperser guild was not affected by fragmentation, habitat features or geographical location. However, individual species and groups of resident/migrant birds responded differently: whereas resident dispersers were more abundant in large patches, wintering dispersers were more abundant in fruit‐rich patches. Predator abundances were similar between patches, although the guild composition shifted with fragmentation. The proportion of myrtle fruits consumed by dispersers and predators varied greatly between patches, but did not depend on bird abundances. The geographical location of patches determined the presence or absence of interactions between myrtles and seed predators (six predated and three non‐predated patches), a fact that greatly influenced fruit dispersal success. Moreover, predation rates were lower (and dispersal rates higher) in large patches with fruit‐poor heterospecific environments (i.e. dominated by myrtle). Predator satiation and a higher preference for heterospecific fruits by dispersers may explain these patterns. These results show that 1) the frugivore assemblage in warm Mediterranean lowlands is mostly composed of fragmentation‐tolerant species that respond differently to landscape changes; and 2) that the feeding behaviour of both dispersers and predators influenced by local fruit availability may be of great importance for interpreting patterns of frugivory throughout the study area.  相似文献   

3.
A. Hampe 《Bird Study》2013,60(1):116-123
In southern temperate regions many fleshy-fruited plant species ripen their fruits during the breeding or early post-breeding season and these are consumed by resident birds. I studied the frugivore community of the summer-fruiting tree Frangula alnus ssp. baetica in southern Spain and the significance of fruit in the diet of adult and recently fledged birds. Twelve species consumed F. alnus fruits. Almost 97% of the foraging visits were carried out by the four most abundant species, Robin Erithacus rubecula, Blackcap Sylvia atricapilla, Blackbird Turdus merula and Blue Tit Parus caeruleus. During the ripening season Robins and Blackcaps concentrated at fruit-rich sites. Entire families of Blackcap and Blackbird regularly entered fruiting trees together. In contrast, adult Robins always foraged solitarily, and accounted for only 4% of the tree visits, while 96% were realized by recently fledged birds of the first brood. In all species, young birds foraged as efficiently as adults. F. alnus fruits are not part of the regular nestling diet, but they are a significant part of the diet for recently fledged Robins during their postnatal dispersal. Conversely, these are the most important and effective seed dispersers while adult Robins scarcely take part in the dispersal of F. alnus seeds.  相似文献   

4.
Fruit size in wild olives: implications for avian seed dispersal   总被引:3,自引:0,他引:3  
1. The response of frugivorous birds to an enlargement of fruit size, and the consequences for both birds and plants, are analysed for the interaction between avian seed dispersers and olives ( Olea europaea) .
2. The enlargement of fruit size promotes a shift in frugivorous birds' feeding behaviour, from swallowing fruits whole to pecking pieces of pulp. The relative frequency of olive consumption using each feeding behaviour was assessed by combining field data on frequency of appearance of olive pulp and seeds with data from laboratory trials.
3. Sardinian Warblers ( Sylvia melanocephala ) and European Robins ( Erithacus rubecula ) were mainly peckers both on cultivated and wild olives. Blackcaps ( Sylvia atricapilla ) consumed wild olives mainly by swallowing but consumed cultivated olives (larger than the wild ones) primarily by pecking. Song Thrushes ( Turdus philomelos ) were primarily swallowers of both types of fruits.
4. Laboratory trials with Song Thrushes, Blackcaps and European Robins showed that: (a) all were able to peck fruits; (b) fruit size determined a shift from swallowing to pecking, as pecking frequency increased with the enlargement of the fruit size; (c) all the species had an increased fruit handling failure rate when trying to swallow increasingly large fruits; and (d) from the birds' perspective, small shifts in fruit size may have important consequences on fruit profitability.
5. Pecking on olives turns the mutualistic fruit–frugivore interaction into a fruit-pulp predator interaction, thus arising a conflict between the plant and frugivorous birds.
6. This study shows that heavy dependence on fruit is not always simply related to seed dispersal. The same frugivorous bird species can act as a seed disperser or a pulp predator for the same plant species. The threshold between these roles is highly influenced by the ratio gape size/fruit size.  相似文献   

5.
Traveset  A. 《Plant Ecology》1993,107(1):191-203
Vertebrate frugivores often feed on fruits upon or within which insects also feed, yet little information exists on the potential magnitude of interactions between these consumers. The Mediterranean shrub Pistacia terebinthus, the birds that consume its fruits, and the wasps that feed upon its seeds are examined in this study. P. terebinthus produces a highly variable fraction of final-sized red fruits that never become mature (green-colored). Red fruits can be immature, parthenocarpic, aborted, or attacked by wasps, and their pulp is much less nutritious than that of mature fruits. A total of 20 bird species consumed the fruits in the study area. Legitimate dispersers accounted for 39% of the total fruit removal, while pulp eaters and seed predators accounted for the remainder. Birds strongly preferred the mature fruits (only 4% of the fruits consumed were red). The incidence of wasps in the seeds ranged from 0 to 42% of the crop in 1989 and from 0 to 24% in 1990. The influence of avian and insect frugivore guilds on each other appears to be quite low because of the narrow overlap in resource utilization by birds and wasps, and an overall low intensity of wasp seed predation. From an evolutionary perspective, the possible ability of wasps to preclude fruit maturation appears not to be attributable to the present interaction with avian frugivores.  相似文献   

6.
The fruiting phenology of animal-dispersed plants was observed in a warm temperate, evergreen forest on Yakushima Island. The number of ripe fruits was counted for 22 trees, four lianas and one parasitic epiphyte species with sapfruit. These fruits were consumed by birds and Japanese macaques (Macaca fuscata yakui). Birds with small gapes (e.g. Japanese white-eye [Zosterops japonica]) consumed only small fruit less than 6 mm in diameter, while birds with large gapes (e.g. red-capped green pigeon [Sphenurus formosae]) and Japanese macaques consumed a wide range of fruits from 4 to 16 mm in diameter. The larger animals did not ignore the smaller fruits. Brown-eared bulbul (Hypsipetes amaurotis) and Japanese white-eye were the main consumers of sapfruit in terms of frequency in winter. Some of the observed consumers were year-round residents, but most of the consumers migrated to Yakushima Island from the main islands of Japan to overwinter (from November to March), and their abundance in winter was four times as high as during the rest of the year (from May to October). In 23 of the 27 plant species investigated, sapfruit production coincided with their immigration season, whereas tree species bear capsules and nuts during autumn from September to November. We suggest that sapfruit species set their ripe period to the season when frugivorous birds are most abundant.  相似文献   

7.
Most tropical plants produce fleshy fruits that are dispersed primarily by vertebrate frugivores. Behavioral disparities among vertebrate seed dispersers could influence patterns of seed distribution and thus forest structure. This study investigated the relative importance of arboreal seed dispersers and seed predators on the initial stage of forest organization–seed deposition. We asked the following questions: (1) To what degree do arboreal seed dispersers influence the species richness and abundance of the seed rain? and (2) Based on the plant species and strata of the forest for which they provide dispersal services, do arboreal seed dispersers represent similar or distinct functional groups? To answer these questions, seed rain was sampled for 12 months in the Dja Reserve, Cameroon. Seed traps representing five percent of the crown area were erected below the canopies of 90 trees belonging to nine focal tree species: 3 dispersed by monkeys, 3 dispersed by large frugivorous birds, and 3 wind‐dispersed species. Seeds disseminated by arboreal seed dispersers accounted for ca 12 percent of the seeds and 68 percent of the seed species identified in seed traps. Monkeys dispersed more than twice the number of seed species than large frugivorous birds, but birds dispersed more individual seeds. We identified two distinct functional dispersal groups, one composed of large frugivorous birds and one composed of monkeys, drop dispersers, and seed predators. These groups dispersed plants found in different canopy strata and exhibited low overlap in the seed species they disseminated. We conclude it is unlikely that seed dispersal services provided by monkeys could be compensated for by frugivorous birds in the event of their extirpation from Afrotropical forests.  相似文献   

8.
We evaluated temporal variation and quality of food resources available to birds especially in two energy-demanding seasons: one when there is a peak of molting residents and another when non-breeding individuals are the bulk of biomass of captured birds. Birds were captured and observed, as well as fruits counted and collected, in two restinga sites for 2 years. Molting resident birds may rely basically on the regularly produced Clusia hilariana and Erythroxylum spp. fruits as lipid-sources, while non-breeders count on Ocotea notata fruits (also rich in lipids) during their passage by the study site. We found that fruits with sugars, lipids or proteins were available throughout the whole period, but a more intense seasonal variation was observed for the before mentioned plant species. The birds studied are known to be potential seed dispersers of these plant species, which are important components of restinga plant community structure.  相似文献   

9.
Summary The fruits ofPistacia terebinthus, a circum-Mediterranean tree/shrub, are consumed by an array of bird species that differ in feeding methods and in relative frequencies of visits to plants. In this study I document interindividual variation in the proportion of fruits consumed by three types of frugivores: legitimate dispersers, pulp-consumers and seed predators. The results show that the relative frequencies of each kind of frugivore notably influence the final reproductive output (absolute number of viable seeds dispersed) and in fact prevail over the effects of pre-dispersal factors acting on plant fitness. Those relative frequencies are not associated with any of the plant traits related to fitness, such as fruit crop size and the number of viable seeds produced, suggesting that the type of avian frugivory exerts a negligible, if not null, selective pressure on such plant attributes. Plant specialization to attract the most effective seed dispersers seems to be precluded, given the small scale at which the high variation in seed dispersal success takes place.  相似文献   

10.
Current knowledge of frugivory and seed dispersal by vertebrates in the Oriental Region is summarized. Some degree of frugivory has been reported for many fish and reptile species, almost half the genera of non-marine mammals and more than 40% of bird genera in the region. Highly frugivorous species, for which fruit dominates the diet for at least part of the year, occur in at least two families of reptiles, 12 families of mammals and 17 families of birds. Predation on seeds in fleshy fruits is much less widespread taxonomically: the major seed predators are colobine monkeys and rodents among the mammals, and parrots, some pigeons, and finches among the birds. Most seeds in the Oriental Region, except near its northern margins, are dispersed by vertebrate families which are endemic to the region or to the Old World. Small fruits and large, soft fruits with many small seeds are consumed by a wide range of potential seed dispersal agents, including species which thrive in small forest fragments and degraded landscapes. Larger, bigger-seeded fruits are consumed by progressively fewer dispersers, and the largest depend on a few species of mammals and birds which are highly vulnerable to hunting, fragmentation and habitat loss.  相似文献   

11.
Seed dispersal plays a central role in plant ecology. Among animals, birds are particularly important seed dispersers, often incorporating exotic plants into their diets and facilitating their integration in the communities. Network theory offers a highly informative framework to study the structural and functional attributes of complex interactions networks. We used information from bird fecal samples to build a quantitative seed dispersal network for the last fragment of native laurel forest in the island of São Miguel—Azores with three specific objectives: (1) to assess the integration of exotic seeds into seed dispersal; (2) to evaluate the impact of exotic plants in network structure; (3) to test the potential of an exotic species to reduce the seed dispersal of a co-occurring native, via competition for seed dispersers. The seed dispersal network was based on the analysis of 1,121 droppings and described 74 unique interactions between 41 plant species and 7 bird species. Exotic seeds deeply infiltrated into the seed dispersal network forming the majority (59 %) of seeds in the droppings and including those of three globally invasive plants. Overall, birds depended equally on native and exotic fruits despite the lower abundance of the latter in the study area. In an experiment, birds did not show a preference for fruits of the exotic Leycesteria formosa over the native Vaccinium cylindraceum consuming them equally. However, the presence of the exotic plant negatively affected the number of native seeds dispersed, by diverting some of the consumers of the native fruits. Taken altogether the results reveal an alarming invasion level of seed dispersal systems in one of the last remnant native forests of the Azores.  相似文献   

12.
黄檗的更新特点及食果实鸟类对其种子的传播   总被引:20,自引:5,他引:15  
在帽儿山实验林场和哈尔滨实验林场 ,黄檗母树下没有幼苗分布 ,不能进行天然更新 ,需要靠食果实鸟类等将果实和种子传播至远离母树的其他林下。捕食黄檗果实的食果实鸟类有 9种。其中 6种是食果肉鸟类 ,吞入果实后 ,消化果肉 ,而种子完整地随粪便排出而得以传播。其余 3种是食种子鸟类 ,没有传播作用。果实在鸟类消化道内的滞留时间达 2 0~ 30min ,具有很长的潜在传播距离。将鸟类消化后的种子与完整果实和人为去果肉种子进行萌发对比实验 ,消化后种子的累计萌发率与其余二者之间均没有显著性差异 ,说明食果实鸟类的消化 (道 )过程对种子萌发没有明显影响 ,同时证明果肉对种子萌发率没有显著影响 ,果肉中不含萌发抑制物质。黄檗提供多种鸟类以食物 ,而鸟类也同时以多种肉质果植物为食物。因此食果实鸟类和肉质果植物 (包括黄檗 )之间形成了松散的互利共生关系  相似文献   

13.
Seed dispersal is an ecological process crucial for forest regeneration and recruitment. To date, most studies on frugivore seed dispersal have used the seed dispersal effectiveness framework and have documented seed-handling mechanisms, dispersal distances and the effect of seed handling on germination. In contrast, there has been no exploration of “disperser reliability” which is essential to determine if a frugivore is an effective disperser only in particular regions/years/seasons or across a range of spatio-temporal scales. In this paper, we propose a practical framework to assess the spatial reliability of frugivores as seed dispersers. We suggest that a frugivore genus would be a reliable disperser of certain plant families/genera if: (a) fruits of these plant families/genera are represented in the diets of most of the species of that frugivore, (b) these are consumed by the frugivore genus across different kinds of habitats, and (c) these fruits feature among the yearly staples and preferred fruits in the diets of the frugivore genus. Using this framework, we reviewed frugivory by the genus Macaca across Asia to assess its spatial reliability as seed dispersers. We found that the macaques dispersed the seeds of 11 plant families and five plant genera including at least 82 species across habitats. Differences in fruit consumption/preference between different groups of macaques were driven by variation in plant community composition across habitats. We posit that it is essential to maintain viable populations of macaques across their range and keep human interventions at a minimum to ensure that they continue to reliably disperse the seeds of a broad range of plant species in the Anthropocene. We further suggest that this framework be used for assessing the spatial reliability of other taxonomic groups as seed dispersers.  相似文献   

14.
Seed dispersal often limits tropical forest regeneration and animals disperse most rainforest tree seeds. This presents two important questions for restoration ecologists: (1) which animals are common seed dispersers? and (2) which restoration techniques attract them? Fourteen restoration sites were planted with four tree species in three designs, (1) controls (no planting, natural regeneration) (2) islands (trees planted in small patches), and (3) plantations (trees planted continuously over a large patch). We sampled birds in November, February, and April 2007–2008 with mist nets, in February and July 2009 with observations, and in July 2008 with both techniques. We documented 30 seed species from fecal samples of captured birds. All identified seed species were early‐successional forms. Four tanager species, three thrushes, two saltators, two flycatchers, and one finch were categorized as common seed dispersers, based on their high likelihood of dispersing seeds. Common dispersers were generalist species with small gape widths (<15 mm). Common dispersers were captured significantly more often in plantations than controls in most seasons and more often in plantations than islands during one season. Common disperser observations were significantly greater in plantations than controls during two periods and in plantations compared with islands in one period. Results indicate that plantation‐style planting is the conservative strategy to maximize attractiveness to common dispersers in tropical restoration sites. Island planting is an alternative when resources are limited although disperser activity may be lower in some seasons than in plantations. Additional research should investigate how to attract large, forest‐associated dispersers.  相似文献   

15.
We examined the interactions between bird-dispersed plants and fruit-consuming birds with various feeding strategies, by reviewing the plant species consumed by 14 bird species in Japan with four feeding types: gulpers (five species), grinders (four species), crushers (four species), and peckers (one species). Our literature review provided information on the plant species consumed by the birds in Japan and the morphological traits of the fruits: fruit volume, seed mass and number, pulp type (fleshy, dry, or arillate), and plant height (tall, medium, or small). Using these data, we examined the diversity of plant species consumed by each bird and the fruit morphological traits that affected fruit selection. The five gulpers consumed fruits from the largest number of plants, followed by the four grinders, the four crushers, and the one pecker. The gulpers and grinders consumed a wider variety of fruits than were consumed by the crushers and the pecker. Logistic regression analysis revealed that some crushers and the pecker preferred plants with dry or arillate pulp around the seeds. Our results suggest that a frugivorous bird’s feeding strategies, and particularly its fruit-handling behaviors and the fruit parts it ingests, influence the diversity of plants it consumes. The crushers and the pecker, which feed exclusively on seeds, require more effort and time to consume this type of food, and this might cause a strong preference for specific fruit traits and thus, consumption of a lower diversity of plant species.  相似文献   

16.
Summary The likelihood that a plant's seeds will be dispersed by fruit-eating birds may depend upon the size and shape of its fruits. Assuming that elongate fruits can be swallowed more easily than spherical fruits of equal volume and that plant fitness is enhanced by seed dispersal by many individuals and species of birds, natural selection should favour increasing fruit elongation with increasing fruit size in bird-dispersed plants. According to this view, this allometric pattern would be adaptive. Alternatively, fruit shape in bird-dispersed plants may be constrained by development or phylogeny. To determine whether there was any evidence to support the adaptive allometry hypothesis, we examined allometric relationships between length and diameter in fruits and seeds in a group of neotropical bird-dispersed plant species. Using the major axis technique, we regressed ln(diameter) on ln(length) for fruits and seeds at various taxonomic levels: (1) within individual trees ofOcotea tenera (Lauraceae) (2) among 19 trees within a population ofO. tenera, as well as among pooled fruits from multiple trees within 20 other species in the Lauraceae, (3) among 25 sympatric species within a plant family (Lauraceae) and (4) among 167 species representing 63 angiosperm families within a plant community in Monteverde, Costa Rica. At most taxonomic levels, a tendency for fruit length to increase more rapidly than fruit diameter among fruits (negative allometry) occurred more frequently than expected by chance. Estimated slopes of the regressions of fruit length on fruit diameter were < 1 within 15 of the 19 individualO. tenera trees, among tree means withinO. tenera, among pooled fruits within 16 of the 20 other species in the Lauraceae, among species means within the Lauraceae and among means of all bird-dispersed species in the lower montane forests of Monteverde. Seed allometry showed similar patterns, although for both fruits and seeds the broad confidence intervals of the slopes estimated by major axis regression overlapped 1 in many cases. Among the 63 Monteverde family means, fruit length and diameter scaled isometrically. Based on measurements of ontogenetic changes in fruit shape in a single species,O. viridifolia, we found no evidence that negative allometry in fruit shape within the Lauraceae was an inevitable consequence of developmental constraints. Instead, increasing elongation of fruits and seeds in certain plant taxa is consistent with adaptation to gape-limited avian seed dispersers. Contrary results from vertebrate-dispersed species from Malawi and Spain may reflect differences between the New and Old World in plant taxa, seed dispersers or evolutionary history.  相似文献   

17.
Worldwide declines in bird numbers have recently renewed interest in how well bird?plant mutualisms are functioning. In New Zealand, it has been argued that bird pollination was relatively unimportant and bird pollination failure was unlikely to threaten any New Zealand plants, whereas dispersal mutualisms were widespread and in some cases potentially at risk because of reliance on a single large frugivore, the kereru (Hemiphaga novaeseelandiae). Work since 1989, however, has changed that assessment. Smaller individual fruits of most plant species can be dispersed by mid-sized birds such as tui (Prosthemadera novaezelandiae) because both fruits and birds vary in size within a species. Only one species (Beilschmiedia tarairi) has no individual fruits small enough for this to occur. Germination of 19 fleshy-fruited species, including most species with fruits >8 mm diameter, does not depend on birds removing the fruit pulp. The few studies of fruit removal rates mostly (7 out of 10) show good dispersal quantity. So dispersal is less at risk than once thought. In contrast, there is now evidence for widespread pollen limitation in species with ornithophilous flowers. Tests on 10 of the 29 known native ornithophilous-flowered species found that in 8 cases seed production was reduced by at least one-third, and the pollen limitation indices overall were significantly higher than the global average. Birds also frequently visit flowers of many other smaller-flowered native species, and excluding birds significantly reduced seed set in the three species tested. So pollination is more at risk than once thought. Finally, analyses of both species numbers and total woody basal area show that dependence on bird pollination is unexpectedly high. Birds have been recorded visiting the flowers of 85 native species, representing 5% of the total seed-plant flora (compared with 12% of those with fleshy fruit) and 30% of the tree flora (compared with 59% with fleshy fruit). A higher percentage of New Zealand forest basal area has bird-visited flowers (37% of basal area nationally) than fleshy fruit (31%). Thus, bird pollination is more important in New Zealand than was realised, partly because birds visit many flowers that do not have classic ?ornithophilous? flower morphology.  相似文献   

18.
Seeds and fruits of Early Cretaceous (Barremian-Aptian) angiosperms from the Famalic?o locality in Portugal were analyzed to establish seed and fruit size (volume) distributions and to infer the proportion of animal-dispersed fruits. On the basis of a sample of 106 angiosperm fruit and seed taxa, the average seed size was 0.78 mm3 (range 0.02-6.86 mm3), whereas the average fruit size was 2.06 mm3 (range 0.12-8.34 mm3). Variation in seed size among taxa is smaller than in modern plant communities, but within-taxon variation is similar to that known for extant plants. No significant difference in the size of "fleshy" versus other fruits was observed. The proportion of fleshy fruits was 24.5%. This high figure was surprising and indicates that the significance of animal dispersal during an early stage in angiosperm evolution has been underestimated. We suggest that reptiles and multituberculates, and perhaps other mammals and birds as well, were the likely seed dispersers and that the early angiosperms from Famalic?o probably were herbs or small shrubs that inhabited a semiopen coniferous woodland.  相似文献   

19.
A survey of the sources of Clostridium botulinum type C toxin possibly utilized as food by aquatic birds in an epizootic area of avian botulism in northern Utah showed that living aquatic and terrestrial invertebrates normally found in close association with dead, decomposing birds commonly carried the toxin. Of 461 samples associated with 21 species of avian carcasses, 198 were toxin-positive. Invertebrate species not normally scavengers of vertebrate tissues were less commonly and less highly toxic, particularly when captured 30 cm or more from a carcass; six of 237 samples of such aquatic invertebrates low-level toxin. Of the species tested, blow fly larvae (Calliphoridae) were the most consistently and highly toxic, although others, particularly adult and larval stages of several species of beetles (Coleoptera), contained toxin at levels probably significant in the epizootiology of the disease. An estimated 0.05 to 0.25 g of the most toxic fly larvae or 15 g of the most toxic beetles tested carried a mediam lethal dose for an adult mallard duck. Examination of stomach contents of aquatic birds dead of botulism showed that some had consumed invertebrates.  相似文献   

20.
The Dispersal Syndrome hypothesis remains contentious, stating that apparently nonrandom associations of fruit characteristics result from selection by seed dispersers. We examine a key assumption under this hypothesis, i.e. that fruit traits can be used as reliable signals by frugivores. We first test this assumption by looking at whether fruit colour allows birds and primates to distinguish between fruits commonly dispersed by birds or primates. Second, we test whether the colours of fruits dispersed by primates are more contrasting to primates than the colours of bird‐dispersed fruits, expected if fruit colour is an adaptation to facilitate the detection by seed dispersers. Third, we test whether fruit colour has converged in unrelated plant species dispersed by similar frugivores. We use vision models based on peak sensitivities of birds’ and primates’ cone cells. We base our analyses on the visual systems of two types of birds (violet and ultraviolet based) and three types of primates (trichromatic primates from the Old and the New Worlds, and a dichromatic New World monkey). Using a Discriminant Function Analysis, we find that all frugivore groups can reliably discriminate between bird‐ and primate‐dispersed fruits. Fruit colour can be a reliable signal to different seed dispersers. However, the colours of primate‐dispersed fruits are less contrasting to primates than those of bird‐dispersed fruits. Fruit colour convergence in unrelated plants is independent of phylogeny and can be better explained by disperser type, which supports the hypothesis that frugivores are important in fruit evolution. We discuss adaptive and nonadaptive hypotheses that can potentially explain the pattern we found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号