首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybridization in the genus Lens by means of embryo culture   总被引:1,自引:0,他引:1  
Summary The cultivated lentil L. culinaris and the wild lentil L. ervoides are reproductively isolated from one another due to their hybrid embryo breakdowns. Using embryo culture, vegetatively normal hybrids were obtained. One specific hybrid, heterozygous for a reciprocal translocation, had about 50% gamete viability and produced aborted and viable embryos in a 11 ratio. In the F2, vegetatively normal and highly fertile plants were selected. With the aid of embryo culture techniques, L. ervoides can be included in the wild gene pool of the cultivated lentil.  相似文献   

2.
Maize (Zea mays L.) Dwarf8-1 (D8-1) is an andromonoecious dwarf mutant proposed to be involved in gibberellin (GA) reception (Fujioka et al. 1988b; Harberd and Freeling 1989). The mutant D8-1 is dominant and GA-nonresponsive (Phinney 1956). We show by map position and similarity of phenotype that five additional dwarf mutants are D8 alleles. We show by map position and similarity of phenotype that a second andromonoecious dwarf mutant, D9-1, defines a duplicate gene. Maize D9-1 and each dominant D8 allele specify a different plant stature, from very mild to very severe dwarfism. Plants of D9-1 and all dominant D8 alleles, except D8-1591, were GA-nonresponsive when treated with 7500 nmol GA3. The behavior of the mild dwarf D8-1591 was unique in that a small but significant growth response was detected (37% for D8-1591 vs. 130% for the wild type) when treated with 7500 nmol GA3. These results establish that all dwarf genotypes, except D8-1591, in one dose set a maximum limit on plant growth and block the normal response to GA. When treated with the GA-synthesis inhibitor paclobutrazol, plants of all dwarf genotypes and wild-type siblings were severely dwarfed. Plants of all dwarf genotypes treated with the GA-synthesis inhibitor paclobutrazol and GA3 were returned to their normal dwarf phenotype. Dominant dwarfing, delayed flowering, increased tillering, and anther development in the ear are characteristic features of D9-1 and all D8 alleles. The GA-synthesis-deficient dwarfs also have these characteristic features. We discuss the function of the wild-type gene product in the context of the observed results.Abbreviations D8 Dwarf8 - D9 Dwarf9 - GA(n) gibberellin A(n) - GA3 gibberellic acid - MNL Maize Genetics Cooperation Newsletter - NIL near-isogenic lines - RFLP restriction fragment length polymorphism - WT wild type This work was supported, in part, by a National Science Foundation Plant Postdoctoral Fellowship to R.G.W., by grants from NIH and ICI Seeds to M.F., the NSF Center for Plant Developmental Biology and the California Agriculture Experiment Station. Much of the work was done in the laboratory of Tim Helentjaris and was supported by a grant from Pioneer Hi-Bred Int'l. The generous gifts of the dominant dwarfing mutants from M.G. Neuffer and O.E. Nelson Jr. are gratefully acknowledged.  相似文献   

3.
Powdery mildew caused by Blumeria graminis f. sp. tritici is an important wheat disease in China and other parts of the world. Wild emmer (Triticum turgidum var. dicoccoides) is the immediate progenitor of cultivated tetraploid and hexaploid wheats and thus an important resource for wheat improvement. Wild emmer accession IW2 collected from Mount Hermon, Israel, is highly resistant to powdery mildew at the seedling and adult plant stages. Genetic analysis using an F2 segregating population and F2:3 families, derived from a cross between susceptible durum cultivar Langdon and wild emmer accession IW2, indicated that a single dominant gene was responsible for the resistance of IW2. Bulked segregant and molecular marker analyses detected that six polymorphic SSR, one ISBP, and three EST-STS markers on chromosome 3BL bin 0.63–1.00 were linked to the resistance gene. Allelic variations of resistance-linked EST-STS marker BE489472 revealed that the allele was present only in wild emmer but absent in common wheat. Segregation distortion was observed for the powdery mildew resistance allele and its linked SSR markers with preferential transmission of Langdon alleles over IW2 alleles. The resistance gene was introgressed into common wheat by backcrossing and marker-assisted selection. Since no designated powdery mildew resistance gene has been found on chromosome 3BL, the resistance gene derived from wild emmer accession IW2 appears to be new one and was consequently designated Pm41. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Dwarf genes have been valuable for improving harvestable yield of several crop plants and may be useful in oilseed Brassica. We evaluated a dwarf gene, dwf2, from Brassica rapa in order to determine its phenotypic effects and genetic characteristics. The dwf2 mutant was insensitive to exogenous GA3 for both plant height and flowering time, suggesting that it is not a mutation in the gibberellin biosynthesis pathway. The dwarf phenotype was controlled by a semidominant allele at a single locus. Near-isogenic lines that were homozygous or heterozygous for dwf2 had 47.4% or 30.0% reduction in plant height, respectively, compared to the tall wild-type line, and the reduction was due to reduced internode length and number of nodes. The dwf2 homozygous and heterozygous lines had the same or significantly higher numbers of primary branches than the wild-type line, but did not differ in flowering time. The DWF2 gene was mapped to the bottom of linkage group R6, in a region having homology to the top of Arabidopsis thaliana chromosome 2. The map position of DWF2 in comparison to markers in A. thaliana suggests it is a homolog of RGA (repressor of ga1-3), which is a homolog of the wheat Green Revolution gene. This dwarf gene could be used to gain more insight on the gibberellin pathway and to reduce lodging problems in hybrid oilseed Brassica cultivars.Communicated by J.S. Heslop-Harrison  相似文献   

5.
Summary A relationship between height genes (dw locus) and perioxidase was demonstrated by extracting and determining peroxidase specific activity in internode tissue from different height isogenic lines of sorghum Sorghum bicolor (L.) Moench]. Tall plants (2 dwarf) had less peroxidase per gram tissue than their short counterparts (3 dwarf); their F1 offspring internodes were closer but had more peroxidase than the tall parent. Peroxidase in the F2 offspring was inversely related to their height and followed a simply-inherited pattern similar to that for height.Among different tissues analyzed, peroxidase concentration in roots was higher than in leaves and internodes, whole internode higher than in pith, and seed embryo higher than in endosperm. Peroxidase activity of nonviable seeds was negligible.Isoelectric focusing provided a more detailed peroxidase zymogram than did gel electrophoresis. Differences in peroxidase bands among tall and short parental plants, F1 and F2 segregating groups all appear to be reflected by intensity differences rather than by position or number of bands.Activities of nitrate reductase and acid phosphatase did not correlate with height. That finding provides a control and suggests that peroxidase activity is not associated with height by chance but may have a functional relationship.Contribution no. 1628-j, Dept. of Agronomy and no. 188-j, Dept. of Biochemistry, and no. 962-j, Dept. of Grain Science and Industry, Kansas State University, Kansas Agricultural Experiment Station, Manhattan, Kansas 66506.  相似文献   

6.
Relationships among cultivated and wild lentils revealed by RAPD analysis   总被引:5,自引:0,他引:5  
RAPD markers were used to distinguish between six different Lens taxa, representing cultivated lentil and its wild relatives. Twenty-four arbitrary sequence 10-mer primers were identified which revealed robust and easily interpretable amplification-product profiles. These generated a total of 88 polymorphic bands in 54 accessions and were used to partition variation within and among Lens taxa. The data showed that, of the taxa examined, ssp. orientalis is most similar to cultivated lentil. L. ervoides was the most divergent wild taxon followed by L. nigricans. The genetic similarity between the latter two species was of the same magnitude as between ssp. orientalis and cultivated lentil. In addition, species-diagnostic amplification products specific to L. odemensis, L. ervoides and L. nigricans were identified. These results correspond well with previous isozyme and RFLP studies. RAPDs, however, appear to provide a greater degree of resolution at a sub-species level. The level of variation detected within cultivated lentils suggests that RAPD markers may be an appropriate technology for the construction of genetic linkage maps between closely related Lens accessions.On sabbatical leave from HP Agricultural University, Palampur 176 062, India  相似文献   

7.
The response of normal soybean (Glycine max [L.] Merrill) cultivars to gibberellins (GAs) and to an inhibitor of GA biosynthesis indicated that, as in other species, endogenous GAs are involved in controlling internode length. The responses to GA of several pairs of isogenic dwarf and normal genotypes (isolines) were compared. Dwarf genotypes T209, T244, T256, and M64–503-Duddy apparently are not dwarfed by lesions in the biosynthetic pathway similar to the well-studied mutations in pea and corn. Although these genotypes responded to GA3, their growth as a percentage of initial shoot length was less than that of the normal isolines following GA3 treatment. Dwarf genotype T210 responded to GA3 treatment with a much smaller increase in stature than the other dwarf genotypes. Roots of T210 seedlings were of normal size, which indicated that the mutation in T210 primarily affects shoot growth. Transport and metabolism of GA3 were equivalent in T210 and its non-dwarf isoline, Lincoln. The slight response in shoot length of T210 to GA3 was accounted for by cell elongation, which GA3 promoted to at least the same extent as in Lincoln. Gibberellin A3 had no effect on cell number in T210, although GA3 increased cell number in Lincoln by 53%. Thus, T210 is dwarfed by an inability to carry out GA-promoted cell division.  相似文献   

8.
9.
Plant height is an important agronomic trait involved in lodging resistance and harvest index. The identification and characterization of mutants that are defective in plant height have implications for trait improvement in breeding programs. Two dominant maize dwarf mutants D8 and D9 have been well-characterized. Here, we report the characterization of a dominant maize dwarf mutant Dwarf11 (D11). Dwarf stature of D11 was mainly attributed to the inhibition of longitudinal cell elongation. The levels of bioactive GA3 were significantly lower in D11. Contrarily, D8 mutant accumulates markedly higher levels of GA3. The expression of GA biosynthetic and catabolic genes was dramatically decreased in D11. Expression variations of d8 and d9 genes were not observed in D11 mutant. Moreover, genetic suppressors of D11 were identified in inbred line Chang 7-2. Integrated omics data indicated that D11 is a novel dominant maize dwarf. The ultimate D11 gene cloning and its regulatory network elucidation may strengthen our understanding of the genetic basis of plant architecture and provide cues for breeding of crops with plant height ideotypes.  相似文献   

10.
Summary Dwarf varieties have had virtually no impact on the production of pearl millet, in contrast to the case of wheat, rice, and sorghum. This research compared tall and dwarf near-isogenic F1 hybrids to attempt to determine if there were deleterious effects of the d 2 dwarfing gene that might account for the lack of release/cultivation of dwarf pearl millet cultivars. Dwarf isohybrids on average yielded less than the tails, because of a smaller average seed size combined with a similar grain number per unit area. There was, however, a larger contribution of background genetic variation (pollinator, male-sterile, and interaction effects) to hybrid variation for nearly all characters measured, including seed size, than there was of the dwarfing gene. Selection of dwarf parents capable of producing hybrids with equal seed size and yield to that of tall parents should not be difficult.Journal article no. 1469 of the International Crops Research Institute for the Semi-Arid Tropics, Patancheru, A.P. 502 324, India  相似文献   

11.
在用普通小麦对长穗偃麦草(Etytrigia elongata=Agropyron elongatum,2n=70)的核代换回交过程中,在BC_9F_1发现了一个超矮秆核质杂种小麦,株高35厘米左右,定名为小偃矮。细胞学观察和与普通小麦正反杂交的遗传分析,证明:(1) 小偃矮是一个异源胞质单体附加系(21″W+1′Ag);(2) 长穗偃麦草细胞质和附加的外来染色体没有携带矮秆基因;(3) 矮秆遗传主要受细胞核内一对显性矮化基因控制。  相似文献   

12.
The fall armyworm (FAW), Spodoptera frugiperda, is a major pest native to the Americas that has recently invaded the Old World. Point mutations in the target-site proteins acetylcholinesterase-1 (ace-1), voltage-gated sodium channel (VGSC) and ryanodine receptor (RyR) have been identified in S. frugiperda as major resistance mechanisms to organophosphate, pyrethroid and diamide insecticides respectively. Mutations in the adenosine triphosphate-binding cassette transporter C2 gene (ABCC2) have also been identified to confer resistance to Cry1F protein. In this study, we applied a whole-genome sequencing (WGS) approach to identify point mutations in the target-site genes in 150 FAW individuals collected from China, Malawi, Uganda and Brazil. This approach revealed three amino acid substitutions (A201S, G227A and F290V) of S. frugiperda ace-1, which are known to be associated with organophosphate resistance. The Brazilian population had all three ace-1 point mutations and the 227A allele (mean frequency = 0.54) was the most common. Populations from China, Malawi and Uganda harbored two of the three ace-1 point mutations (A201S and F290V) with the 290V allele (0.47–0.58) as the dominant allele. Point mutations in VGSC (T929I, L932F and L1014F) and RyR (I4790M and G4946E) were not detected in any of the 150 individuals. A novel 12-bp insertion mutation in exon 15 of the ABCC2 gene was identified in some of the Brazilian individuals but absent in the invasive populations. Our results not only demonstrate robustness of the WGS-based genomic approach for detection of resistance mutations, but also provide insights for improvement of resistance management tactics in S. frugiperda.  相似文献   

13.
 The cytoplasmic male-sterile (CMS) line CMS-pennellii (BC10P2 L. peruvianum×L. pennellii) and its complex hybrids with L. esculentum were studied. The established sterility was classified as the sporogenous type. As a result of the interaction of the genome of L. pennellii and the cytoplasm of L. peruvianum clear changes were established in the profiles of malic enzyme and esterase. Restriction fragment length polymorphism (RFLP) was detected between the mitochondrial (mt) genomes of CMS-pennellii and the cytoplasm donor, L. peruvianum, for two mtDNA probes: atpA and nad3. The established differences in the isozyme pattern and mt genomes are considered as useful markers to distinguish fertile and sterile plants. A breakthrough in the unilateral incompatibility of CMS-pennellii and the incorporation of the genome of L. esculentum on a CMS background is reported. The analysis of the complex hybrids assumes the interaction of two dominant genes – a maintainer gene from L. pennellii and a restorer gene from cultivated tomato. The hybrids produced with L. esculentum provide the basis for the development of a CMS system in cultivated tomato. Received: 25 May 1998 / Accepted: 26 August 1998  相似文献   

14.
Genetic, physiological, and morphological studies of dwarf mutants of Arabidopsis thaliana (L.) Heynh. from the collection of the Department of Genetics and Breeding, Moscow State University, showed that the NA and LE genes are involved in regulating elongation of internode cells and sensitivity to various hormones. The na mutation suppressed stem growth only in the presence of the active LE gene. The absence of the LE activity (in the lele homozygote) restored stem growth of the na mutant to the level characteristic of thele-2 mutant, and a decrease inLE activity (in LE/le heterozygote) almost completely suppressed the na phenotype. Phenotypic analysis of homozygous double mutants and heterozygotes obtained by crossing the na and le-2 mutants showed that the recessive le-2 allele has an epistatic effect on the semidominant na allele and that the genes possibly control consecutive steps of one biochemical pathway or one morphogenetic process. A hypothetical scheme was proposed for the interaction of the NA and LE gene products.  相似文献   

15.
Summary Segregation of 18 marker genes was monitored in selfed progeny of a Lens culinaris × L. ervoides hybrid; five linkage groups were mapped, one of which contained a reciprocal translocation break-point that differentiates between the parents. Four markers were found to be linked to the translocation break-point: Aco-1 and Pgm-2 on one side and Gs and Got-2 on the other. The gene pairs on both sides of the translocation are not linked in L. culinaris or in L. orientalis. The L. ervoides gene order was also found in L. odemensis but with significantly reduced map distances. Analysis of monogenic segregations in a number of Lens inter-specific crosses revealed some consistent patterns of deviations from the expected Mendelian ratios. The factors responsible for these unequal segregations, genotypic effects on recombination frequencies, negative interference, and the possible ancient origin of the translocation are discussed.  相似文献   

16.
Four pairs of specific PCR primers have been designed on the basis of the sequence of the granule-bound starch synthase gene (GBSS; dominant non-waxy gene Wx) and used to amplify its homologous sequence from thirteen waxy and two non-waxy inbred lines. Results from electrophoresis indicated that the recessive waxy gene was wx, derived from the dominant non-waxy gene Wx by mutation at its 3′ end. The sequence of the mutated 3′ end was amplified by the TAIL-PCR technique. Sequence alignment showed that the mutation of the wx gene was caused by transposition of the aldehyde dehydrogenase gene rf2. Two pairs of specific primers were designed on the basis of the sequence difference between the dominant gene Wx and its mutated recessive allele wx and used as intragenic selection markers to identify individual plants of genotypes WxWx, Wxwx, and wxwx by PCR amplification from the segregating population of the F2 generation crossed between waxy and non-waxy inbred lines. Iodine solution staining and starch component assay showed that all the 35 F2 plants identified as genotype WxWx produced non-waxy kernels of the F3 generation and that all 33 F2 plants identified as genotype wxwx produced waxy kernels of the F3 generation. This result can be used to improve the selection efficiency of waxy maize breeding and for selection of other single genes and major polygenes.  相似文献   

17.
Reid JB 《Plant physiology》1983,72(3):759-763
Internode length in light-grown peas (Pisum sativum L.) is controlled by the interaction of genes occupying at least five major loci, Le, La, Cry, Na, and Lm. The present work shows that the genes at all of the loci examined (Le, Cry, and Na) also exert an effect on internode length in plants grown in complete darkness. Preliminary results using pure lines were verified using either segregating progenies or near isogenic lines. The major cause of the differences was due to a change in the number of cells per internode rather than to an alteration of the cell length. Since the genes occupying at least two of these loci, Le and Na, have been shown to be directly involved with gibberellin metabolism, it appears that gibberellins are not only essential for elongation in the dark but are limiting for elongation in the nana (extremely short, na), dwarf (Na le), and tall (Na Le) phenotypes. These results are supported by the large inhibitory effects of AMO 1618 treatments on stem elongation in dwarf and tall lines grown in the dark and the fact that applied gibberellic acid could overcome this inhibition and greatly promote elongation in a gibberellin-deficient na line. It is clear that the internode length genes, and in particular the alleles at the Le locus, are not acting by simply controlling the sensitivity of the plant to light.  相似文献   

18.
Randomly amplified polymorphic DNA (RAPD) markers were used to estimate intra- and interspecific variations in the genus Lens (lentil). Twenty cultivars of L. culinaris ssp. culinaris, including 11 microsperma (small-seeded) and nine macrosperma (large-seeded) types, and 16 wild relatives (four accessions each of L. culinaris ssp. orientalis, L. odemensis, L. nigricans and L. ervoides), were evaluated for genetic variability using a set of 40 random 10-mer primers. Fifty reproducibly scorable DNA bands were observed from ten of the primers, 90% of which were polymorphic. Genetic distances between each of the accessions were calculated from simple matching coefficients. A dendrogram showing genetic relationships between them was constructed by an unweighted pair-group method with arithmetical averages (UPGMA). This study revealed that (1) expect for L. ervoides, the level of intraspecific variation in cultivated lentil is lower than that in wild species, (2) L. culinaris ssp. orientalis is the most likely candidate for a progenitor of the cultivated species, and (3) microsperma and macrosperma cultivars were indistinguishable by the RAPD markers identified here.  相似文献   

19.
Detergent soluble polypeptides from teliospores of Ustilago hordei were examined by two-dimensional isoelectric focusing-polyacrylamide gel electrophoresis. A relatively prominent polypeptide (M.W. 28,000, P1 6.8) was found in extracts of teliospores from two isolates that were avirulent on the barley cultivar ‘Plush’ but was not detected in extracts from two isolates that were virulent on this cultivar. The polypeptide was also detected in extracts from teliospores of an F1, hybrid between one of the virulent and one of the avirulent isolates. Haploid cultures from five meiotic tetrads, isolated from the F1 hybrid, were backcrossed to haploids from the virulent parent to determine the pathogenicity of each strain. The polypeptide segregated among the 20 progeny as if under the control of a single, dominant allele. The gene governing virulence on ‘Plush’ was not linked to the gene governing the segregating polypeptide.  相似文献   

20.
The ability to produce an autoimmune response to F antigen in mice is underH-2-linked and non-H- 2-linkedIr-gene control. There is an absolute requirement for ak allele atH-2K orI-A in order to produce anti-F antibodies. Low and high responsiveness is controlled by a non-H-2-linkedIr gene which behaves in a similar fashion toIr-3, in that as the dose of F-antigen is lowered, low responders behave as high responders and vice versa. This conversion from low to high responsiveness also occurs within a month after ATX.— Most F1 hybrids derived from (responder x nonresponder) parents bearing identical F-types behave as dominant nonresponders. As a result of ATX, such F1 mice convert to high responders. This conversion occurs if the animals are not immunized before day 90. If they receive F antigen prior to that time, they remain nonresponders for 7–9 months. One F1 combination — AKD2 — behaves as a dominant high responder. Genetic analysis showed that in the presence of ak allele atH-2K orI-A, a non-H-2-linkedIr gene inherited from the AKR mice determined dominant responsivenss. No manipulation of the immune response or combination of genes converted nonresponders lacking ak allele into responders. Such complex genetic control suggests regulation by a number of independently segregating loci whose function it is to limit the autoimmune response to F antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号