首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free DNA in solution exhibits an untwisting of the double helix with increasing temperature. We have shown previously that when DNA is reconstituted with histones to form nucleosome core particles, both the core DNA and the adjacent linker DNA are constrained from thermal untwisting. The origin of this constraint is unknown. Here we examine the effect of two modifications of nucleosome structure on the constraint against thermal untwisting, and also on DNA topology. In one experiment, we removed the highly positively charged histone amino and carboxy termini by trypsinization. Alternatively, we added histone H5, a histone H1 variant from chick erythrocytes. Neither of these modifications had any major effect on DNA topology or twist in the nucleosome.  相似文献   

2.
The factors that determine the binding of a chromophore between the base pairs in DNA intercalation complexes are dissected. The electrostatic potential in the intercalation plane is calculated using an accurate ab initio based distributed multipole electrostatic model for a range of intercalation sites, involving different sequences of base pairs and relative twist angles. There will be a significant electrostatic contribution to the binding energy for chromophores with a predominantly positive electrostatic potential, but this varies significantly with sequence, and somewhat with twist angle. The usefulness of these potential maps for understanding the binding of intercalators is explored by calculating the electrostatic binding energy for 9-aminoacridine, ethidium, and daunomycin in a variety of model binding sites. The electrostatic forces play a major role in the positioning of an intercalating 9-aminoacridine and a significant stabilizing role in the binding of ethidium in its sterically constrained position, but the intercalation of daunomycin is determined by the side-chain binding. Sequence preferences are likely to be determined by a complex and subtle mixture of effects, with electrostatics being just one component. The electrostatic binding energy is also unlikely to be a major determinant of the twist angle, as its variation with angle is modest for most intercalation sites. Overall, the electrostatic potential maps give guidance on how positively charged chromophores can be chemically adapted by heteroatomic substitution to optimise their binding.  相似文献   

3.
4.
The catabolite activator protein (CAP) bends DNA in the CAP-DNA complex, typically introducing a sharp DNA kink, with a roll angle of approximately 40 degrees and a twist angle of approximately 20 degrees, between positions 6 and 7 of the DNA half-site, 5'-A1A2A3T4G5T6G7A8T9C10T11 -3' ("primary kink"). In previous work, we showed that CAP recognizes the nucleotide immediately 5' to the primary-kink site, T6, through an "indirect-readout" mechanism involving sequence effects on energetics of primary-kink formation. Here, to understand further this example of indirect readout, we have determined crystal structures of CAP-DNA complexes containing each possible nucleotide at position 6. The structures show that CAP can introduce a DNA kink at the primary-kink site with any nucleotide at position 6. The DNA kink is sharp with the consensus pyrimidine-purine step T6G7 and the non-consensus pyrimidine-purine step C6G7 (roll angles of approximately 42 degrees, twist angles of approximately 16 degrees ), but is much less sharp with the non-consensus purine-purine steps A6G7 and G6G7 (roll angles of approximately 20 degrees, twist angles of approximately 17 degrees). We infer that CAP discriminates between consensus and non-consensus pyrimidine-purine steps at positions 6-7 solely based on differences in the energetics of DNA deformation, but that CAP discriminates between the consensus pyrimidine-purine step and non-consensus purine-purine steps at positions 6-7 both based on differences in the energetics of DNA deformation and based on qualitative differences in DNA deformation. The structures further show that CAP can achieve a similar, approximately 46 degrees per DNA half-site, overall DNA bend through a sharp DNA kink, a less sharp DNA kink, or a smooth DNA bend. Analysis of these and other crystal structures of CAP-DNA complexes indicates that there is a large, approximately 28 degrees per DNA half-site, out-of-plane component of CAP-induced DNA bending in structures not constrained by end-to-end DNA lattice interactions and that lattice contacts involving CAP tend to involve residues in or near biologically functional surfaces.  相似文献   

5.
Monte Carlo implementation of supercoiled double-stranded DNA   总被引:1,自引:0,他引:1       下载免费PDF全文
Metropolis Monte Carlo simulation is used to investigate the elasticity of torsionally stressed double-stranded DNA, in which twist and supercoiling are incorporated as a natural result of base-stacking interaction and backbone bending constrained by hydrogen bonds formed between DNA complementary nucleotide bases. Three evident regimes are found in extension versus torsion and force versus extension plots: a low-force regime in which over- and underwound molecules behave similarly under stretching; an intermediate-force regime in which chirality appears for negatively and positively supercoiled DNA and extension of underwound molecule is insensitive to the supercoiling degree of the polymer; and a large-force regime in which plectonemic DNA is fully converted to extended DNA and supercoiled DNA behaves quite like a torsionless molecule. The striking coincidence between theoretic calculations and recent experimental measurement of torsionally stretched DNA (Strick et al., Science. 271:1835, 1996; Biophys. J. 74:2016, 1998) strongly suggests that the interplay between base-stacking interaction and permanent hydrogen-bond constraint takes an important role in understanding the novel properties of elasticity of supercoiled DNA polymer.  相似文献   

6.
We discuss the predictions which follow from the assumption of statistically independent twist and writhe distributions of given variances in circular DNA with single-strand nicks. The nature of the topoisomer distribution produced upon covalent closure of the nicks is described, as well as the nature of the twist and writhe distributions in the fully-closed molecules. In particular, we show how the distributions depend on the magnitudes of the given variances, and how the relative magnitudes of the variances can be deduced from experiment. One additional consequence of the theory is the prediction of a necessary difference between the temperature coefficient of the twist in nicked versus fully-closed circular DNA. The ratio of the two twist coefficients turns out to depend only on the ratio of the twist and writhe variances in nicked DNA.  相似文献   

7.
Pooja Gupta 《Biophysical journal》2009,97(12):3150-3157
We have used magnetic tweezers to study nucleosome assembly on topologically constrained DNA molecules. Assembly was achieved using chicken erythrocyte core histones and histone chaperone protein Nap1 under constant low force. We have observed only partial assembly when the DNA was topologically constrained and much more complete assembly on unconstrained (nicked) DNA tethers. To verify our hypothesis that the lack of full nucleosome assembly on topologically constrained tethers was due to compensatory accumulation of positive supercoiling in the rest of the template, we carried out experiments in which we mechanically relieved the positive supercoiling by rotating the external magnetic field at certain time points of the assembly process. Indeed, such rotation did lead to the same nucleosome saturation level as in the case of nicked tethers. We conclude that levels of positive supercoiling in the range of 0.025-0.051 (most probably in the form of twist) stall the nucleosome assembly process.  相似文献   

8.
The ten helical twist angles of B-DNA.   总被引:25,自引:18,他引:7       下载免费PDF全文
On the assumption that the twist angles between adjacent base-pairs in the DNA molecule are additive a linear system of 40 equations was derived from experimental measurements of the total twist angles for different pieces of DNA of known sequences. This system of equations is found to be statistically consistent providing a solution for all ten possible twist angles of B-DNA by a least squares fitting procedure. Four of the calculated twist angles were not known before (tau AC, tau AG, tau CA, tau TA). The other six twist angles calculated are very close to the experimentally measured ones (tau AA, tau AT, tau CC, tau OG, tau GA, tau GC). The data used were obtained by the electrophoretic band-shift method (1-3), crystallography (4) and nuclease digestion of DNA adsorbed to mica or Ca-phosphate surface (5,6). The validity of the principle of additivity of the twist angles implies that the angle between any particular two base-pairs is a function of only these base-pairs, independent of nearest neighbours.  相似文献   

9.
Torque-limited RecA polymerization on dsDNA   总被引:2,自引:2,他引:0       下载免费PDF全文
The assembly of RecA onto a torsionally constrained double-stranded DNA molecule was followed in real time using magnetic tweezers. Formation of a RecA–DNA filament on the DNA tether was stalled owing to different physical processes depending on the applied stretching force. For forces up to 3.6 pN, the reaction stalled owing to the formation of positive plectonemes in the remaining DNA molecule. Release of these plectonemes by rotation of the magnets led to full coverage of the DNA molecule by RecA. At stretching forces larger than 3.6 pN, the twist induced during filament formation caused the reaction to stall before positive supercoils were generated. We deduce a maximum built-up torsion of 10.1 ± 0.7 kbT. In vivo this built-up torsion may be used to favor regression of a stalled replication fork or to free the chromosomal DNA in E.coli from its condensing proteins.  相似文献   

10.
Abstract

We discuss the predictions which follow from the assumption of statistically independent twist and writhe distributions of given variances in circular DNA with single-strand nicks. The nature of the topoisomer distribution produced upon covalent closure of the nicks is described, as well as the nature of the twist and writhe distributions in the fully-closed molecules. In particular, we show how the distributions depend on the magnitudes of the given variances, and how the relative magnitudes of the variances can be deduced from experiment. One additional consequence of the theory is the prediction of a necessary difference between the temperature coefficient of the twist in nicked versus fully-closed circular DNA. The ratio of the two twist coefficients turns out to depend only on the ratio of the twist and writhe variances in nicked DNA.  相似文献   

11.
The twist flexibility of DNA is central to its many biological functions. Explicit solvent molecular dynamics simulations in combination with an umbrella sampling restraining potential have been employed to study induced twist deformations in DNA. Simulations allowed us to extract free energy profiles for twist deformations and were performed on six DNA dodecamer duplexes to cover all 10 possible DNA basepair steps. The shape of the free energy curves was similar for all duplexes. The calculated twist deformability was in good agreement with experiment and showed only modest variation for the complete duplexes. However, the response of the various basepair steps on twist stress was highly nonuniform. In particular, pyrimidine/purine steps were much more flexible than purine/purine steps followed by purine/pyrimidine steps. It was also possible to extract correlations of twist changes and other helical as well as global parameters of the DNA molecules. Twist deformations were found to significantly alter the local as well as global shape of the DNA modulating the accessibility for proteins and other ligands. Severe untwisting of DNA below an average of 25 degrees per basepair step resulted in the onset of a global structural transition with a significantly smaller twist at one end of the DNA compared to the other.  相似文献   

12.
ySWI/SNF complex belongs to a family of enzymes that use the energy of ATP hydrolysis to remodel chromatin structure. Here we examine the role of DNA topology in the mechanism of ySWI/SNF remodeling. We find that the ability of ySWI/SNF to enhance accessibility of nucleosomal DNA is nearly eliminated when DNA topology is constrained in small circular nucleosomal arrays and that this inhibition can be alleviated by topoisomerases. Furthermore, we demonstrate that remodeling of these substrates does not require dramatic histone octamer movements or displacement. Our results suggest a model in which ySWI/SNF remodels nucleosomes by using the energy of ATP hydrolysis to drive local changes in DNA twist.  相似文献   

13.
Monte Carlo simulations are used to study the effect of spontaneous (intrinsic) twist on the conformation of topologically equilibrated minicircles of dsDNA. The twist, writhe, and radius of gyration distributions and their moments are calculated for different spontaneous twist angles and DNA lengths. The average writhe and twist deviate in an oscillatory fashion (with the period of the double helix) from their spontaneous values, as one spans the range between two neighboring integer values of intrinsic twist. Such deviations vanish in the limit of long DNA plasmids.  相似文献   

14.
DNA is an extensible molecule, and an extended conformation of DNA is involved in some biological processes. We have examined the effect of elongation stress on the conformational properties of DNA base pairs by conformational analysis. The calculations show that stretching does significantly affect the conformational properties and flexibilities of base pairs. In particular, we have found that the propeller twist in base pairs reverses its sign upon stretching. The energy profile analysis indicates that electrostatic interactions make a major contribution to the stabilization of the positive-propeller-twist configuration in stretched DNA. This stretching also results in a monotonic decrease in the helical twist angle, tending to unwind the double helix. Fluctuations in most variables initially increase upon stretching, because of unstacking of base pairs, but then the fluctuations decrease as DNA is stretched further, owing to the formation of specific interactions between base pairs induced by the positive propeller twist. Thus, the stretching of DNA has particularly significant effects upon DNA flexibility. These changes in both the conformation and flexibility of base pairs probably have a role in functional interactions with proteins.  相似文献   

15.
Mazur  J.  Jernigan  R. L.  Sarai  A. 《Molecular Biology》2003,37(2):240-249
DNA is an extensible molecule, and an extended conformation of DNA is involved in some biological processes. We have examined the effect of elongation stress on the conformational properties of DNA base pairs by conformational analysis. The calculations show that stretching does significantly affect the conformational properties and flexibilities of base pairs. In particular, we have found that the propeller twist in base pairs reverses its sign upon stretching. The energy profile analysis indicates that electrostatic interactions make a major contribution to the stabilization of the positive-propeller-twist configuration in stretched DNA. This stretching also results in a monotonic decrease in the helical twist angle, tending to unwind the double helix. Fluctuations in most variables initially increase upon stretching, because of unstacking of base pairs, but then the fluctuations decrease as DNA is stretched further, owing to the formation of specific interactions between base pairs induced by the positive propeller twist. Thus, the stretching of DNA has particularly significant effects upon DNA flexibility. These changes in both the conformation and flexibility of base pairs probably have a role in functional interactions with proteins.  相似文献   

16.
17.
Base sequence and helix structure variation in B and A DNA   总被引:22,自引:0,他引:22  
The observed propeller twist in base-pairs of crystalline double-helical DNA oligomers improves the stacking overlap along each individual helix strand. But, as proposed by Calladine, it also leads to clash or steric hindrance between purines at adjacent base-pairs on opposite strands of the helix. This clash can be relieved by: (1) decreasing the local helix twist angle between base-pairs; (2) opening up the roll angle between base-pairs on the side on which the clash occurs; (3) separating purines by sliding base-pairs along their long axes so that the purines are partially pulled out of the stack (leading to equal but opposite alterations in main-chain torsion angle delta at the two ends of the base-pair); and (4) flattening the propeller twist of the offending base-pairs. Simple sum functions, sigma 1 through sigma 4, are defined, by which the expected local variation in helix twist, base roll angle, torsion angle delta and propeller twist may be calculated from base sequence. All four functions are quite successful in predicting the behavior of B DNA. Only the helix twist and base roll functions are applicable to A DNA, and the helix twist function begins to fail for an A helical RNA/DNA hybrid. Within these limits, the sequence-derived sum functions match the observed helix parameter variation quite closely, with correlation coefficients greater than 0.900 in nearly all cases. Implications of this sequence-derived helix parameter variation for repressor-operator interactions are considered.  相似文献   

18.
In order to predict curvature of DNA fragments, we previously developed a computer program for simply calculating a vectorial sum of all individual roll, tilt and twist wedge angles between the nearest base pairs for a given DNA fragment [Lee et al., (1991)]. Now, a new program, called Z-curve, was developed to calculate three-dimensional coordinates of the helical center of each base pair along the DNA, using helical axis deviations from B-form DNA by wedge angles. The output file of the new program was designed to become an input file for a graphics program, Insight II. Thus, we were able to obtain three-dimensional graphic presentations of DNA helical axis curvatures of any length. It visualized spatial details of the DNA curvature, where and how much it curves, and to which direction. It also allowed calculation of the three-dimensional distance between two ends of a DNA fragment, which could provide a measure of its curvature. Here, three DNA fragments, both curved and straight, were subjected to the Z-curve and Insight II programs. The results showed that their curvature details could be visualized to the level of the base pair, whether the DNA fragments contained an oligo(A) track or not. Their estimated curvatures were consistent with the experimental results of permutation gel mobility assay.  相似文献   

19.
In eukaryotes, Rad51 protein is responsible for the recombinational repair of double-strand DNA breaks. Rad51 monomers cooperatively assemble on exonuclease-processed broken ends forming helical nucleo-protein filaments that can pair with homologous regions of sister chromatids. Homologous pairing allows the broken ends to be reunited in a complex but error-free repair process. Rad51 protein has ATPase activity but its role is poorly understood, as homologous pairing is independent of adenosine triphosphate (ATP) hydrolysis. Here we use magnetic tweezers and electron microscopy to investigate how changes of DNA twist affect the structure of Rad51-DNA complexes and how ATP hydrolysis participates in this process. We show that Rad51 protein can bind to double-stranded DNA in two different modes depending on the enforced DNA twist. The stretching mode is observed when DNA is unwound towards a helical repeat of 18.6 bp/turn, whereas a non-stretching mode is observed when DNA molecules are not permitted to change their native helical repeat. We also show that the two forms of complexes are interconvertible and that by enforcing changes of DNA twist one can induce transitions between the two forms. Our observations permit a better understanding of the role of ATP hydrolysis in Rad51-mediated homologous pairing and strand exchange.  相似文献   

20.
Writhe of DNA induced by a terminal twist   总被引:1,自引:0,他引:1  
This paper considers the three-dimensional structure of B-form DNA. The molecule may be open or covalently closed. For the former, its two ends are not allowed to move or rotate freely in space unless the molecule is under the influence of rigid body motions of the ambient space. Implied by the elastic rod model for DNA, the molecule writhes immediately when subject to a terminal twist as long as its axis is none of the following curves: lines, circular arcs, circular helices. This result is remarkably different from well-known results about DNA of other conformations. For example, if a DNA is regarded as an elastic rod whose axis is a circle, then it has no induced writhe when subject to a terminal twist until the latter meets a critical extent. To my mother for her 70th birthday An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号