首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The perivascular transmigration and accumulation of macrophages and T lymphocytes in the CNS of mice with experimental autoimmune encephalomyelitis (EAE) may be partly regulated by low m.w. chemotactic cytokines. Using the RNase protection assay and ELISA, we quantified expression of chemokines and chemokine receptors in the spinal cord (SC), brain, and lymph nodes of BV8S2 transgenic mice that developed or were protected from EAE by vaccination with BV8S2 protein. In paralyzed control mice, the SC had increased cellular infiltration and strong expression of the chemokines RANTES, IFN-inducible 10-kDa protein, and monocyte chemoattractant protein-1 and the cognate chemokine receptors CCR1, CCR2, and CCR5, with lower expression of macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, and MIP-2; whereas brain had less infiltration and a lower expression of a different pattern of chemokines and receptors. In TCR-protected mice, there was a decrease in the number of inflammatory cells in both SC and brain. In SC, the reduced cellular infiltrate afforded by TCR vaccination was commensurate with profoundly reduced expression of chemokines and their cognate chemokine receptors. In brain, however, TCR vaccination did not produce significant changes in chemokine expression but resulted in an increased expression of CCR3 and CCR4 usually associated with Th2 cells. In contrast to CNS, lymph nodes of protected mice had a significant increase in expression of MIP-2 and MIP-1beta but no change in expression of chemokine receptors. These results demonstrate that TCR vaccination results in selective reduction of inflammatory chemokines and chemokine receptors in SC, the target organ most affected during EAE.  相似文献   

2.
CCR4, a chemokine receptor for macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC), has been implicated as a preferential marker for Th2 lymphocytes. Following in vitro polarization protocols, most Th2 lymphocytes express CCR4 and respond to its ligands TARC and MDC, whereas Th1 lymphocytes express CXC chemokine receptor 3 and CCR5 (but not CCR4). We show in this study that CCR4 is a major receptor for MDC and TARC on T lymphocytes, as anti-CCR4 mAbs significantly inhibit the migration of these cells to MDC and TARC. CCR4 is also highly expressed in most single-positive CD4(+) thymocytes and on a major fraction of blood nonintestinal (alpha(4)beta(7)(-)) memory CD4 lymphocytes, including almost all skin memory CD4(+) cells expressing the cutaneous lymphocyte Ag (CLA), but weakly or not expressed in other subsets in thymus and blood. Interestingly, major fractions of circulating CCR4(+) memory CD4 lymphocytes coexpress the Th1-associated receptors CXC chemokine receptor 3 and CCR5, suggesting a potential problem in using these markers for Th1 vs Th2 lymphocyte cells. Moreover, although production of Th2 cytokines in blood T cells is associated with CCR4(+) CD4 lymphocytes, significant numbers of freshly isolated circulating CCR4(+) memory CD4 lymphocytes (including both CLA(+) and CLA(-) fractions) readily express the Th1 cytokine IFN-gamma after short-term stimulation. Our results are consistent with a role for CCR4 as a major trafficking receptor for systemic memory T cells, and indicate that the patterns and regulation of chemokine receptor expression in vivo are more complex than indicated by current in vitro models of Th1 vs Th2 cell generation.  相似文献   

3.
The immune response of atopic individuals against allergens is characterized by increased levels of Th2 cytokines and chemokines. However, the way in which the cytokine/chemokine profile is matched to the type of invading allergen, and why these profiles sometimes derail and lead to disease, is not well understood. We recently demonstrated that pollen modulates dendritic cell (DC) function in a way that results in an enhanced capacity to initiate Th2 responses in vitro. Here, we examined the effects of aqueous birch pollen extracts (Bet.-APE) on chemokine receptor expression and chemokine production by human monocyte-derived DCs. Bet.-APE strongly induced expression and function of CXCR4 and reduced CCR1 and CCR5 expression on immature DCs. In addition, DC treatment with Bet.-APE significantly reduced LPS-induced production of CXCL10/IP-10, CCL5/RANTES; induced CCL22/macrophage-derived chemokine; and did not significantly change release of CCL17/thymus and activation-regulated chemokine. At a functional level, Bet.-APE increased the capacity of LPS-stimulated DCs to attract Th2 cells, whereas the capacity to recruit Th1 cells was reduced. Bet.-APE significantly and dose-dependently enhanced intracellular cAMP, suggesting that water-soluble factors from pollen grains bind a G(alphas)-protein-coupled receptor. E(1)-Phytoprostanes were identified to be one player in the Th2-polarizing potential of aqueous pollen extracts. In summary, our results demonstrate that pollen itself releases regulatory mediators which generate a Th2-promoting micromilieu with preferential recruitment of Th2 cells to the site of pollen exposure.  相似文献   

4.
5.
One of the characteristic features of allergic asthma is recruitment of large numbers of inflammatory cells including eosinophils and Th2 lymphocytes to the lung. This influx of inflammatory cells is thought to be a controlled and coordinated process mediated by chemokines and their receptors. It is thought that distinct, differential expression of chemokine receptors allows selective migration of T cell subtypes in response to the chemokines that bind these receptors. Th2 cells preferentially express CCR8 and migrate selectively to its ligand, CC chemokine ligand (CCL)1. We studied the role of the CCR8 ligand, CCL1, in the specific recruitment of Th2 cells and eosinophils to the lung in a murine model of allergic airway disease. We have demonstrated for the first time that CCL1 is up-regulated in the lung following allergen challenge. Moreover, a neutralizing Ab to CCL1 reduced eosinophil migration to the lung, but had no effect on recruitment of Th2 cells following allergen challenge. In addition, there was no change in airway hyperresponsiveness or levels of Th2 cytokines. In a Th2 cell transfer system of pulmonary inflammation, anti-CCL1 also failed to affect recruitment of Th2 cells to the lung following allergen challenge. Significantly, intratracheal instillation of rCCL1 increased recruitment of eosinophils but not Th2 cells to the lung in allergen-sensitized and -challenged mice. In summary, our results indicate that CCL1 is important for the pulmonary recruitment of eosinophils, rather than allergen-specific Th2 cells, following allergen challenge.  相似文献   

6.
American cutaneous leishmaniasis (ACL) presents distinct active clinical forms with different grades of severity, known as localised (LCL), intermediate (ICL) and diffuse (DCL) cutaneous leishmaniasis. LCL and DCL are associated with a polarised T-helper (Th)1 and Th2 immune response, respectively, whereas ICL, or chronic cutaneous leishmaniasis, is associated with an exacerbated immune response and a mixed cytokine expression profile. Chemokines and chemokine receptors are involved in cellular migration and are critical in the inflammatory response. Therefore, we evaluated the expression of the chemokines CXCL10, CCL4, CCL8, CCL11 and CXCL8 and the chemokine receptors CCR3, CXCR3, CCR5 and CCR7 in the lesions of patients with different clinical forms of ACL using immunohistochemistry. LCL patients exhibited a high density of CXCL10+, CCL4+ and CCL8+ cells, indicating an important role for these chemokines in the local Th1 immune response and the migration of CXCR3+ cells. LCL patients showed a higher density of CCR7+ cells than ICL or DCL patients, suggesting major dendritic cell (DC) migration to lymph nodes. Furthermore, DCL was associated with low expression levels of Th1-associated chemokines and CCL11+ epidermal DCs, which contribute to the recruitment of CCR3+ cells. Our findings also suggest an important role for epidermal cells in the induction of skin immune responses through the production of chemokines, such as CXCL10, by keratinocytes.  相似文献   

7.
Migration of CD4 cells into the pancreas represents a hallmark event in the development of insulin-dependent diabetes mellitus. Th1, but not Th2, cells are associated with pathogenesis leading to destruction of islet beta-cells and disease onset. Lymphocyte extravasation from blood into tissue is regulated by multiple adhesion receptor/counter-receptor pairs and chemokines. To identify events that regulate entry of CD4 cells into the pancreas, we transferred Th1 or Th2 cells induced in vitro from islet-specific TCR transgenic CD4 cells into immunodeficient (NOD.scid) recipients. Although both subsets infiltrated the pancreas and elicited multiple adhesion receptors (peripheral lymph node addressin, mucosal addressin cell adhesion molecule-1, LFA-1, ICAM-1, and VCAM-1) on vascular endothelium, entry/accumulation of Th1 cells was more rapid than that of Th2 cells, and only Th1 cells induced diabetes. In vitro, Th1 cells were also distinguished from Th2 cells by the capacity to synthesize several chemokines that included lymphotactin, monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1alpha, whereas both subsets produced macrophage inflammatory protein-1beta. Some of these chemokines as well as RANTES, MCP-3, MCP-5, and cytokine-response gene-2 (CRG-2)/IFN-inducible protein-10 (IP-10) were associated with Th1, but not Th2, pancreatic infiltrates. The data demonstrate polarization of chemokine expression by Th1 vs Th2 cells, which, within the microenvironment of the pancreas, accounts for distinctive inflammatory infiltrates that determine whether insulin-producing beta-cells are protected or destroyed.  相似文献   

8.
Diesel exhausts and their associated organic compounds may be involved in the recent increase in the prevalence of allergic disorders, through their ability to favor a type 2 immune response. Type 2 T cells have been shown to be preferentially recruited by the chemokines eotaxin (CCL11), macrophage-derived chemokine (MDC, CCL22), and thymus activation-regulated chemokine (CCL17) through their interaction with CCR3 and CCR4, respectively, whereas type 1 T cells are mainly recruited by IFN-gamma-induced protein-10 (CXCL10) through CXCR3 binding. The aim of the study was to evaluate the effect of diesel exposure on the expression of chemokines involved in type 1 and 2 T cell recruitment. PBMC and alveolar macrophages from house dust mite allergic patients were incubated with combinations of diesel extracts and Der p 1 allergen, and chemokine production was analyzed. Diesel exposure alone decreased the constitutive IP-10 production, while it further augmented allergen-induced MDC production, resulting in a significantly increased capacity to chemoattract human Th2, but not Th1 clones. Inhibition experiments with anti-type 1 or type 2 cytokine Abs as well as cytokine mRNA kinetic evaluation showed that the chemokine variations were not dependent upon IL-4, IL-13, or IFN-gamma expression. In contrast, inhibition of the B7:CD28 pathway using a CTLA-4-Ig fusion protein completely inhibited diesel-dependent increase of allergen-induced MDC production. This inhibition was mainly dependent upon the CD86 pathway and to a lesser extent upon the CD80 pathway. These results suggest that the exposure to diesel exhausts and allergen may likely amplify a deleterious type 2 immune response via a differential regulation of chemokine production through the CD28 pathway.  相似文献   

9.
Thymic stromal lymphopoietin (TSLP) is said to increase expression of chemokines attracting Th2 T cells. We hypothesized that asthma is characterized by elevated bronchial mucosal expression of TSLP and Th2-attracting, but not Th1-attracting, chemokines as compared with controls, with selective accumulation of cells bearing receptors for these chemokines. We used in situ hybridization and immunohistochemistry to examine the expression and cellular provenance of TSLP, Th2-attracting (thymus and activation-regulated chemokine (TARC)/CCL17, macrophage-derived chemokine (MDC)/CCL22, I-309/CCL1) and Th1-attracting (IFN-gamma-inducible protein 10 (IP-10)/CXCL10, IFN-inducible T cell alpha-chemoattractant (I-TAC)/CXCL11) chemokines and expression of their receptors CCR4, CCR8, and CXCR3 in bronchial biopsies from 20 asthmatics and 15 normal controls. The numbers of cells within the bronchial epithelium and submucosa expressing mRNA for TSLP, TARC/CCL17, MDC/CCL22, and IP-10/CXCL10, but not I-TAC/CXCL11 and I-309/CCL1, were significantly increased in asthmatics as compared with controls (p 相似文献   

10.
11.
12.
Although activation of human innate immunity after endotoxin administration is well established, in vivo endotoxin effects on human T cell responses are not well understood. Most naive human T cells do not express receptors for LPS, but can respond to endotoxin-induced mediators such as chemokines. In this study, we characterized the in vivo response of peripheral human T cell subsets to endotoxin infusion by assessing alterations in isolated T cells expressing different phenotypes, intracellular cytokines, and systemic chemokines concentration, which may influence these indirect T cell responses. Endotoxin administration to healthy subjects produced T cell activation as confirmed by a 20% increase in intracellular IL-2, as well as increased CD28 and IL-2R alpha-chain (CD25) expression. Endotoxin induced indirect activation of T cells was highly selective among the T cell subpopulations. Increased IL-2 production (36.0 +/- 3.7 to 53.2 +/- 4.1) vs decreased IFN-gamma production (33.8 +/- 4.2 to 19.1 +/- 3.2) indicated selective Th1 activation. Th2 produced IL-13 was minimally increased. Differentially altered chemokine receptor expression also indicated selective T cell subset activation and migration. CXCR3+ and CCR5+ expressing Th1 cells were decreased (CXCR3 44.6 +/- 3.2 to 33.3 +/- 4.6 and CCR5 24.8 +/- 2.3 to 12 +/- 1.4), whereas plasma levels of their chemokine ligands IFN-gamma-inducible protein 10 and MIP-1alpha were increased (61.4 +/- 13.9 to 1103.7 +/- 274.5 and 22.8 +/- 6.2 to 55.7 +/- 9.5, respectively). In contrast, CCR4+ and CCR3 (Th2) proportions increased or remained unchanged whereas their ligands, eotaxin and the thymus and activation-regulated chemokine TARC, were unchanged. The data indicate selective activation among Th1 subpopulations, as well as differential Th1/Th2 activation, which is consistent with a selective induction of Th1 and Th2 chemokine ligands.  相似文献   

13.
Although the preliminary characterization of chemokines and their receptors has been prolific, comparatively little is known about the role of chemokines in the evolution of immune responses. We speculate that the preferential recruitment of a particular immune cell population has implications for the short- and long-term features of an adaptive response. To test this hypothesis, we employed adenovirus-mediated gene transfer to express the Th1-affiliated, CXC chemokine IFN-gamma-inducible protein (IP) 10 in the airways of mice undergoing a mucosal sensitization regimen known to result in a Th2-polarized allergic response. This resulted in a approximately 60-75% inhibition of eosinophils in the bronchoalveolar lavage (BAL); these inflammatory changes were accompanied by enhanced IFN-gamma, ablated IL-4, and, peculiarly, unaltered IL-5 and eotaxin levels in the BAL. The effect of IP-10 expression was shown to be dependent on IFN-gamma, as there was no statistically significant reduction in BAL eosinophilia in IFN-gamma knockout mice subjected to the IP-10 intervention. Flow cytometric analysis of mononuclear cells in the lung revealed a approximately 60% reduction in the fraction of CD4(+) cells expressing T1/ST2, a putative Th2 marker, and a parallel increase in the proportion expressing intracellular IFN-gamma following IP-10 treatment. The effect of IP-10 expression at the time of initial Ag encounter is persistent, as mice rechallenged with OVA following the resolution of acute inflammation exhibited reduced eosinophilia and IL-4 in the BAL. Collectively, these data illustrate that local expression of the chemokine IP-10 can introduce Th1 phenomena to a Th2-predisposed context and subvert the development of a Th2 response.  相似文献   

14.
Respiratory syncytial virus (RSV) is a major viral pathogen of infants that also reinfects adults. During RSV infection, inflammatory host cell recruitment to the lung plays a central role in determining disease outcome. Chemokines mediate cell recruitment to sites of inflammation and are influenced by, and influence, the production of cytokines. We therefore compared chemokine production in a mouse model of immunopathogenic RSV infection in which either Th1 or Th2 immunopathology is induced by prior sensitization to individual RSV proteins. Chemokine expression profiles were profoundly affected by the nature of the pulmonary immunopathology: "Th2" immunopathology in BALB/c mice was associated with increased and prolonged expression of CCL2 (MCP-1), CXCL10 (IP-10), and CCL11 (eotaxin) starting within 24 h of challenge. C57BL/6 mice with "Th2" pathology (enabled by a deficiency of CD8+ cells) also showed increased CCL2 production. No differences in chemokine receptor expression were detected. Chemokine blockers may therefore be of use for children with bronchiolitis.  相似文献   

15.
Histamine is a biological amine that plays an important role in allergic responses. However, the involvement of histamine signaling in late allergic responses in the skin is poorly understood. Therefore, we attempted to investigate the involvement of histamine signaling in late allergic responses, especially in keratinocytes (KCs). HaCaT KCs and normal human KCs (NHKs) predominantly expressed histamine H1 receptor (H1R) and H2 receptor (H2R). Histamine suppressed tumor necrosis factor α (TNF-α)- and interferon-γ (IFN-γ)-induced production of CC chemokine ligand 17(CCL17), a type 2 T-helper (Th2) chemokine, by HaCaT KCs. It suppressed the phosphorylation of p38 mitogen-activated protein (MAP) kinase, but not that of extracellular signal-regulated kinases (ERKs), and TNF-α- and IFN-γ-induced nuclear factor κB (NFκB) activity. In contrast, histamine enhanced the production of CXC chemokine ligand 10 (CXCL10), a Th1 chemokine, by TNF-α- and IFN-γ-stimulated HaCaT KCs and NHKs. TNF-α- and IFN-γ-induced CXCL10 production was upregulated by suppression of p38 MAP kinase or NF-κB activity, which could explain histamine involvement. We concluded that histamine suppresses CCL17 production by KCs by suppressing p38 MAP kinase and NF-κB activity through H1R and may act as a negative-feedback signal for existing Th2-dominant inflammation by suppressing CCL17 and enhancing CXCL10 production.  相似文献   

16.
17.
Protective immunity to pathogens depends on efficient immune responses adapted to the type of pathogen and the infected tissue. Dendritic cells (DC) play a pivotal role in directing the effector T cell response to either a protective T helper type 1 (Th1) or type 2 (Th2) phenotype. Human monocyte-derived DC can be differentiated into Th1-, Th2- or Th1/Th2-promoting DC in vitro upon activation with microbial compounds or cytokines. Host defence is highly dependent on mobile leucocytes and cell trafficking is largely mediated by the interactions of chemokines with their specific receptors expressed on the surface of leucocytes. The production of chemokines by mature effector DC remains elusive. Here we assess the differential production of both inflammatory and homeostatic chemokines by monocyte-derived mature Th1/Th2-, Th1- or Th2-promoting DC and its regulation in response to CD40 ligation, thereby mimicking local engagement with activated T cells. We show that mature Th1- and Th1/Th2-, but not Th2-promoting DC, selectively express elevated levels of the inflammatory chemokines CCL2/MCP-1, CCL3/MIP-1alpha, CCL4/MIP-1beta and CCL5/RANTES, as well as the homeostatic chemokine CCL19/MIP-3beta. CCL21/6Ckine is preferentially expressed by Th2-promoting DC. Production of the Th1-attracting chemokines, CXCL9/Mig, CXCL10/IP-10 and CXCL11/I-TAC, is restricted to Th1-promoting DC. In contrast, expression of Th2-associated chemokines does not strictly correlate with the Th2-promoting DC phenotype, except for CCL22/MDC, which is preferentially expressed by Th2-promoting DC. Because inflammatory chemokines and Th1-associated chemokines are constitutively expressed by mature Th1-promoting DC and CCL22/MDC is constitutively expressed by mature Th2-promoting DC, we propose a novel role for mature DC present in inflamed peripheral tissues in orchestrating the immune response by recruiting appropriate leucocyte populations to the site of pathogen entry.  相似文献   

18.
Chemokines have a pivotal role in the mobilization and activation of specific leukocyte subsets in acute allograft rejection. However, the role of specific chemokines and chemokine receptors in islet allograft rejection has not been fully elucidated. We now show that islet allograft rejection is associated with a steady increase in intragraft expression of the chemokines CCL8 (monocyte chemoattractant protein-2), CCL9 (monocyte chemoattractant protein-5), CCL5 (RANTES), CXCL-10 (IFN-gamma-inducible protein-10), and CXCL9 (monokine induced by IFN-gamma) and their corresponding chemokine receptors CCR2, CCR5, CCR1, and CXCR3. Because CCR2 was found to be highly induced, we tested the specific role of CCR2 in islet allograft rejection by transplanting fully MHC mismatched islets from BALB/c mice into C57BL/6 wild-type (WT) and CCR2-deficient mice (CCR2-/-). A significant prolongation of islet allograft survival was noted in CCR2-/- recipients, with median survival time of 24 and 12 days for CCR2-/- and WT recipients, respectively (p < 0.0001). This was associated with reduction in the generation of CD8+, but not CD4+ effector alloreactive T cells (CD62L(low)CD44(high)) in CCR2-/- compared with WT recipients. In addition, CCR2-/- recipients had a reduced Th1 and increased Th2 alloresponse in the periphery (by ELISPOT analysis) as well as in the grafts (by RT-PCR). However, these changes were only transient in CCR2-/- recipients that ultimately rejected their grafts. Furthermore, in contrast to the islet transplants, CCR2 deficiency offered only marginal prolongation of heart allograft survival. This study demonstrates the important role for CCR2 in early islet allograft rejection and highlights the tissue specificity of the chemokine/chemokine receptor system in vivo in regulating allograft rejection.  相似文献   

19.
We examined gene expression levels of multiple chemokines and chemokine receptors during Pneumocystis murina infection in wild-type and immunosuppressed mice, using microarrays and qPCR. In wild-type mice, expression of chemokines that are ligands for Ccr2, Cxcr3, Cxcr6, and Cxcr2 increased at days 32–41 post-infection, with a return to baseline by day 75–150. Concomitant increases were seen in Ccr2, Cxcr3, and Cxcr6, but not in Cxcr2 expression. Induction of these same factors also occurred in CD40-ligand and CD40 knockout mice but only at a much later time-point, during uncontrolled Pneumocystis pneumonia (PCP). Expression of CD4 Th1 markers was increased in wild-type mice during clearance of infection. Ccr2 and Cx3cr1 knockout mice cleared Pneumocystis infection with kinetics similar to wild-type mice, and all animals developed anti-Pneumocystis antibodies. Upregulation of Ccr2, Cxcr3, and Cxcr6 and their ligands supports an important role for T helper cells and mononuclear phagocytes in the clearance of Pneumocystis infection. However, based on the current and prior studies, no single chemokine receptor appears to be critical to the clearance of Pneumocystis.  相似文献   

20.
We have investigated the chemokine receptor expression and migratory behavior of a new subset of nickel-specific skin-homing regulatory CD4(+) T cells (Th(IL-10)) releasing high levels of IL-10, low IFN-gamma, and undetectable IL-4. These cells inhibit in a IL-10-dependent manner the capacity of dendritic cells to activate nickel-specific Tc1 and Th1 lymphocytes. RNase protection assay and FACS analysis revealed the expression of a vast repertoire of chemokine receptors on resting Th(IL-10), including the Th1-associated CXCR3 and CCR5, and the Th2-associated CCR3, CCR4, and CCR8, the latter at higher levels compared with Th2 cells. The most active chemokines for resting Th(IL-10), in terms of calcium mobilization and in vitro migration, were in order of potency: CCL2 (monocyte chemoattractant protein-1, CCR2 ligand), CCL4 (macrophage-inflammatory protein-1beta, CCR5 ligand), CCL3 (macrophage-inflammatory protein-1alpha, CCR1/5 ligand), CCL17 (thymus and activation-regulated chemokine, CCR4 ligand), CCL1 (I-309, CCR8 ligand), CXCL12 (stromal-derived factor-1, CXCR4), and CCL11 (eotaxin, CCR3 ligand). Consistent with receptor expression down-regulation, activated Th(IL-10) exhibited a reduced or absent response to most chemokines, but retained a significant migratory capacity to I-309, monocyte chemoattractant protein-1, and thymus and activation-regulated chemokine. I-309, which was ineffective on Th1 lymphocytes, attracted more efficiently Th(IL-10) than Th2 cells. I-309 and CCR8 mRNAs were not detected in unaffected skin and were up-regulated at the skin site of nickel-allergic reaction, with an earlier expression kinetics compared with IL-10 and IL-4. Results indicate that skin-homing regulatory Th(IL-10) lymphocytes coexpress functional Th1- and Th2-associated chemokine receptors, and that CCR8/I-309-driven recruitment of both resting and activated Th(IL-10) cells may be critically involved in the regulation of Th1-mediated skin allergic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号