首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane fluidity of human cheek cells was determined using fluorescence recovery after photobleaching (FRAP) and steady-state fluorescence anisotropy. The FRAP data showed that the lateral diffusion coefficient (D) and mobile fraction (%R) of lipid in the plasma membrane of control cells were 2.01×10–9 cm2/ sec and 54.25%, respectively. Trypsin treatment increased D and %R to 6.4×10–9 cm2/sec and 72.15%. In contrast, the anisotropy (r) for control cells was 0.270 which remained unchanged by trypsin treatment. The results show that diffusion of lipids in the plane of the membrane is restricted by trypsin-sensitive barriers.  相似文献   

2.
3.
Ca(2+)-binding proteins (CaBPs) represent key factors for the modulation of cellular Ca(2+) dynamics. Especially in thin extensions of nerve cells, Ca(2+) binding and buffered diffusion of Ca(2+) by CaBPs is assumed to effectively control the spatio-temporal extend of Ca(2+) signals. However, no quantitative data about the mobility of specific CaBPs in the neuronal cytosol are available. We quantified the diffusion of the endogenous CaPB parvalbumin (PV) in spiny dendrites of cerebellar Purkinje neurons with two-photon fluorescence recovery after photobleaching. Fluorescently labeled PV diffused readily between spines and dendrites with a median time constant of 49 ms (37-61 ms, interquartile range). Based on published data on spine geometry, this value corresponds to an apparent diffusion coefficient of 43 microm(2) s(-1) (34-56 microm(2) s(-1)). The absence of large or immobile binding partners for PV was confirmed in PV null-mutant mice. Our data validate the common but so far unproven assumption that PV is highly mobile in neurons and will facilitate simulations of neuronal Ca(2+) buffering. Our experimental approach represents a versatile tool for quantifying the mobility of proteins in neuronal dendrites.  相似文献   

4.
Diffusion plays an important role in the transport of nutrients and signaling molecules in cartilaginous tissues. Diffusion coefficients can be measured by fluorescence recovery after photobleaching (FRAP). Available methods to analyze FRAP data, however, assume homogeneity in the environment of the bleached area and neglect geometrical restrictions to diffusion. Hence, diffusion coefficients in inhomogeneous materials, such as most biological tissues, cannot be assessed accurately. In this study, a new method for analyzing data from FRAP measurements has been developed, which is applicable to inhomogeneous tissues. It is based on a fitting procedure of the intensity recovery after photobleaching with a two-dimensional finite element analysis, which includes Fick's law for diffusion. The finite element analysis can account for distinctive diffusivity in predefined zones, which allows determining diffusion coefficients in inhomogeneous samples. The method is validated theoretically and experimentally in both homogeneous and inhomogeneous tissues and subsequently applied to the proliferation zone of the growth plate. Finally, the importance of accounting for inhomogeneities, for appropriate assessment of diffusivity in inhomogeneous tissues, is illustrated.  相似文献   

5.
Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy (CLEM), a simple imaging approach that reduces photobleaching and phototoxicity two- to tenfold, depending on the fluorophore distribution in the object. By spatially controlling the light-exposure time, CLEM reduces the excitation-light dose without compromising image quality. We show that CLEM reduces photobleaching sevenfold in tobacco plant cells expressing microtubule-associated GFP-MAP4 and reduces production of reactive oxygen species eightfold and prolongs cell survival sixfold in HeLa cells expressing chromatin-associated H2B-GFP. In addition, CLEM increases the dynamic range of the fluorescence intensity at least twofold.  相似文献   

6.
Photobleaching and related photochemical processes are recognized experimental barriers to quantification of fluorescence by microscopy. We have measured the kinetics of photobleaching of fluorophores in living and fixed cells and in microemulsions, and have demonstrated the spatial variability of these processes within individual cells. An inverted fluorescence microscope and a high-sensitivity camera, together with high-speed data acquisition by a computer-controlled image processor, have been used to control precisely exposure time to excitation light and to record images. To improve the signal-to-noise ratio, 32 digital images were integrated. After correction for spatial variations in camera sensitivity and background fluorescence, the images of the relative fluorescence intensities for 0.065 micron2 areas in the object plane were obtained. To evaluate photobleaching objectively, an algorithm was developed to fit a three-parameter exponential equation to 20 images recorded from the same microscope field as a function of illumination time. The results of this analysis demonstrated that the photobleaching process followed first-order reaction kinetics with rate constants that were spatially heterogeneous and varied, within the same cell, between 2- and 65-fold, depending on the fluorophore. The photobleaching rate constants increased proportionally with increasing excitation intensity and, for benzo(a)pyrene, were independent of probe concentration over three orders of magnitude (1.25 microM to 1.25 mM). The propensity to photobleach was different with each fluorophore. Under the cellular conditions used in these studies, the average rates of photobleaching decreased in this order: N-(7-nitrobenz-2-oxa-1,3-diazole)-23,24-dinor-5-cholen-22-amine-3 beta-ol greater than acridine orange greater than rhodamine-123 greater than benzo(a)pyrene greater than fluorescein greater than tetramethylrhodamine greater than 1,1'dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine. The photobleaching appears to be an oxidation reaction, in that the addition of saturated solutions of Na2S2O5 to mineral oil microemulsions eliminated photobleaching of N-(7-nitrobenz-2-oxa-1,3-diazole)-23,24-dinor-5-cholen-22-amine-3 beta-ol or benzo(a)pyrene. We identified experimental conditions to observe, without detectable photobleaching, fluorophores in living cells, which can not be studied anaerobically. Useful images were obtained when excitation light was reduced to eliminate photobleaching, as determined from zero-time images calculated from the exponential fit routine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Biomechanics and Modeling in Mechanobiology - Fluorescence recovery after photobleaching (FRAP) is a widely used technique for studying diffusion in biological tissues. Most of the existing...  相似文献   

8.
Background fluorescence from serum chromophores is substantially reduced by a laser photobleaching method. Human and bovine serum samples were illuminated with 337-nm light from a pulsed N2 laser for a short period of time. The serum emission in the region of 440 to 550 nm was reduced by an order of magnitude with no evident damage to serum proteins as judged by the unchanged activity of alkaline phosphatase and aspartate aminotransferase.  相似文献   

9.
In the original theoretical development of fluorescence photobleaching recovery with circular or Gaussian laser intensity profiles (Axelrod et al., 1976, Biophys. J.) the bleaching process is assumed to obey first order kinetics in the fluorescent probe. While this is reasonable in most cases where oxygen participates in the photolysis reaction, some processes may obey second order kinetics in the fluorophore concentration due to dimerization. Accordingly, we present here an analysis of the fluorescence recovery when the photobleaching process is taken to be second order in the probe. Analytical solutions for small bleaching levels indicate that the fluorescence recovery curve is very similar to that measured following a bleaching process first order in the probe. Numerical solutions for moderate bleaching levels show that the recovery is qualitatively similar, but quantitatively different. Because the shape of the recovery curve provides no evidence as to the order of photobleaching, we recommend continued use of the previous theoretical analysis. However, it must be borne in mind that the diffusion coefficient is increasingly underestimated as the extent of photobleaching is increased. The true diffusion coefficient is obtained in the limit of small levels of photobleaching. Estimates of the fractional recovery are not affected by this approach.  相似文献   

10.
The combination of intravital dye, methylene blue (MB), with molecular cancer marker, pH low insertion peptide (pHLIP) conjugated with fluorescent Alexa532 (Alexa532-pHLIP), was evaluated for enhancing contrast of pathological breast tissue ex vivo. Fresh, thick breast specimens were stained sequentially with Alexa532-pHLIP and aqueous MB and imaged using dual-channel fluorescence microscopy. MB and Alexa532-pHLIP accumulated in the nuclei and cytoplasm of cancer cells, respectively. MB also stained nuclei of normal cells. Some Alexa532-pHLIP fluorescence emission was detected from connective tissue and benign cell membranes. Overall, Alexa532-pHLIP showed high affinity to cancer, while MB highlighted tissue morphology. The results indicate that MB and Alexa532-pHLIP provide complementary information and show promise for the detection of breast cancer.  相似文献   

11.
We describe a novel variant of fluorescence lifetime imaging microscopy (FLIM), denoted anisotropy-FLIM or rFLIM, which enables the wide-field measurement of the anisotropy decay of fluorophores on a pixel-by-pixel basis. We adapted existing frequency-domain FLIM technology for rFLIM by introducing linear polarizers in the excitation and emission paths. The phase delay and intensity ratios (AC and DC) between the polarized components of the fluorescence signal are recorded, leading to estimations of rotational correlation times and limiting anisotropies. Theory is developed that allows all the parameters of the hindered rotator model to be extracted from measurements carried out at a single modulation frequency. Two-dimensional image detection with a sensitive CCD camera provides wide-field imaging of dynamic depolarization with parallel interrogation of different compartments of a complex biological structure such as a cell. The concepts and technique of rFLIM are illustrated with a fluorophore-solvent (fluorescein-glycerol) system as a model for isotropic rotational dynamics and with bacteria expressing enhanced green fluorescent protein (EGFP) exhibiting depolarization due to homotransfer of electronic excitation energy (emFRET). The frequency-domain formalism was extended to cover the phenomenon of emFRET and yielded data consistent with a concentration depolarization mechanism resulting from the high intracellular concentration of EGFP. These investigations establish rFLIM as a powerful tool for cellular imaging based on rotational dynamics and molecular proximity.  相似文献   

12.
Saxton MJ 《Biophysical journal》2001,81(4):2226-2240
Anomalous subdiffusion is hindered diffusion in which the mean-square displacement of a diffusing particle is proportional to some power of time less than one. Anomalous subdiffusion has been observed for a variety of lipids and proteins in the plasma membranes of a variety of cells. Fluorescence photobleaching recovery experiments with anomalous subdiffusion are simulated to see how to analyze the data. It is useful to fit the recovery curve with both the usual recovery equation and the anomalous one, and to judge the goodness of fit on log-log plots. The simulations show that the simplest approximate treatment of anomalous subdiffusion usually gives good results. Three models of anomalous subdiffusion are considered: obstruction, fractional Brownian motion, and the continuous-time random walk. The models differ significantly in their behavior at short times and in their noise level. For obstructed diffusion the approach to the percolation threshold is marked by a large increase in noise, a broadening of the distribution of diffusion coefficients and anomalous subdiffusion exponents, and the expected abrupt decrease in the mobile fraction. The extreme fluctuations in the recovery curves at and near the percolation threshold result from extreme fluctuations in the geometry of the percolation cluster.  相似文献   

13.
Using two-photon fluorescence anisotropy imaging of actin-GFP, we have developed a method for imaging the actin polymerization state that is applicable to a broad range of experimental systems extending from fixed cells to live animals. The incorporation of expressed actin-GFP monomers into endogenous actin polymers enables energy migration FRET (emFRET, or homoFRET) between neighboring actin-GFPs. This energy migration reduces the normally high polarization of the GFP fluorescence. We derive a simple relationship between the actin-GFP fluorescence polarization anisotropy and the actin polymer fraction, thereby enabling a robust means of imaging the actin polymerization state with high spatiotemporal resolution and providing what to the best of our knowledge are the first direct images of the actin polymerization state in live, adult brain tissue and live, intact Drosophila larvae.  相似文献   

14.
We derive an exact closed formula for the fluorescence recovery curve measured in fluorescence photobleaching recovery experiments employing uniform circular laser beams. In contrast to the expression used currently, this result is very simple and free of mathematical drawbacks, thus facilitating the quantitative analysis of experimental data.  相似文献   

15.
16.
17.
The technique of fluorescence redistribution after photobleaching was used to measure the translocation rate of fluorescein-labeled dextrans across the nuclear pore complex in isolated rat liver nuclei. A transport assay system was established that could monitor the effect of biologically active molecules, e.g., ATP, GTP, cAMP on the translocation process. The results show that ATP, phosphoinositides, RNA, and insulin can enhance transport rates from 195 to 432%. It was further demonstrated that concanavalin A, but not wheat germ or soybean agglutinin, can block dextran transport completely. The effectors of dextran transport are similar to substances demonstrated to effect the efflux of RNA from isolated nuclei. A model for translocation through the nuclear pore is now presented that incorporates data from protein influx and RNA efflux experiments into a single pathway controlled by ATP.  相似文献   

18.
Reduced nicotine adenine dinucleotide (NADH) is a key metabolite involved in cellular energy conversion and many redox reactions. We describe the use of confocal microscopy in conjunction with enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) of NADH as a topological assay of NADH generation capacity within living cardiac myocytes. Quantitative validation of this approach was performed using a dehydrogenase system, in vitro. In intact cells the NADH ED-FRAP was sensitive to temperature (Q(10) of 2.5) and to dehydrogenase activation by dichloroacetate or cAMP (twofold increase for each). In addition, NADH ED-FRAP was correlated with flavin adenine dinucleotide (FAD(+)) fluorescence. These data, coupled with the cellular patterns of NADH ED-FRAP changes with dehydrogenase stimulation, suggest that NADH ED-FRAP is localized to the mitochondria. These results suggest that ED-FRAP enables measurement of regional dynamics of mitochondrial NADH production in intact cells, thus providing information regarding region-specific intracellular redox reactions and energy metabolism.  相似文献   

19.
20.
The determination of diffusion coefficients from fluorescence recovery data is often complicated by geometric constraints imposed by the complex shapes of intracellular compartments. To address this issue, diffusion of proteins in the lumen of the endoplasmic reticulum (ER) is studied using cell biological and computational methods. Fluorescence recovery after photobleaching (FRAP) experiments are performed in tissue culture cells expressing GFP-KDEL, a soluble, fluorescent protein, in the ER lumen. The three-dimensional (3D) shape of the ER is determined by confocal microscopy and computationally reconstructed. Within these ER geometries diffusion of solutes is simulated using the method of particle strength exchange. The simulations are compared to experimental FRAP curves of GFP-KDEL in the same ER region. Comparisons of simulations in the 3D ER shapes to simulations in open 3D space show that the constraints imposed by the spatial confinement result in two- to fourfold underestimation of the molecular diffusion constant in the ER if the geometry is not taken into account. Using the same molecular diffusion constant in different simulations, the observed speed of fluorescence recovery varies by a factor of 2.5, depending on the particular ER geometry and the location of the bleached area. Organelle shape considerably influences diffusive transport and must be taken into account when relating experimental photobleaching data to molecular diffusion coefficients. This novel methodology combines experimental FRAP curves with high accuracy computer simulations of diffusion in the same ER geometry to determine the molecular diffusion constant of the solute in the particular ER lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号