首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of biosensor devices typically requires incorporation of the molecular recognition element into a solid surface for interfacing with a signal detector. One approach is to immobilize the signal transducing protein directly on a solid surface. Here we compare the effects of two direct immobilization methods on ligand binding, kinetics, and signal transduction of reagentless fluorescent biosensors based on engineered periplasmic binding proteins. We used thermostable ribose and glucose binding proteins cloned from Thermoanaerobacter tengcongensis and Thermotoga maritima, respectively. To test the behavior of these proteins in semispecifically oriented layers, we covalently modified lysine residues with biotin or sulfhydryl functions, and attached the conjugates to plastic surfaces derivatized with streptavidin or maleimide, respectively. The immobilized proteins retained ligand binding and signal transduction but with adversely affected affinities and signal amplitudes for the thiolated, but not the biotinylated, proteins. We also immobilized these proteins in a more specifically oriented layer to maleimide-derivatized plates using a His(2)Cys(2) zinc finger domain fused at either their N or C termini. Proteins immobilized this way either retained, or displayed enhanced, ligand affinity and signal amplitude. In all cases tested ligand binding by immobilized proteins is reversible, as demonstrated by several iterations of ligand loading and elution. The kinetics of ligand exchange with the immobilized proteins are on the order of seconds.  相似文献   

2.
In this protocol we demonstrate a method for comparing the competition between GTPase-binding proteins. Such an approach is important for determining the binding capabilities of GTPases for two reasons: The fact that all interactions involve the same face of the GTPases means that binding events must be considered in the context of competitors, and the fact that the bound nucleotide must also be controlled means that conventional approaches such as immunoprecipitation are unsuitable for GTPase biochemistry. The assay relies on the use of purified proteins. Purified Rac1 immobilized on beads is used as the bait protein, and can be loaded with GDP, a non-hydrolyzable version of GTP or left nucleotide free, so that the signaling stage to be investigated can be controlled. The binding proteins to be investigated are purified from mammalian cells, to allow correct folding, by means of a GFP tag. Use of the same tag on both proteins is important because not only does it allow rapid purification and elution, but also allows detection of both competitors with the same antibody during elution. This means that the relative amounts of the two bound proteins can be determined accurately.  相似文献   

3.
Characterization of protein-carbohydrate interactions at the molecular level is important for understanding many glycan-mediated processes. Here we present a method for the identification of glycan ligands of carbohydrate-binding proteins. The glycans released from natural sources are labeled with biotinamidocaproyl hydrazide (BACH) and subsequently fractionated by high-performance liquid chromatography. Glycan fractions are screened for binding to carbohydrate-binding proteins (CBPs) using a microtitration plate binding assay; CBPs are immobilized, BACH-glycan fractions are added, and bound BACH-glycans are detected using alkaline phosphatase-conjugated streptavidin. The glycan structures in binding fractions are studied by (tandem) mass spectrometry, exoglycosidase treatment, and rechromatography, thereby revealing the glycan motifs recognized by the CBPs. Subsequent surface plasmon resonance experiments using a reverse setup with immobilization of the BACH-glycan ligands on streptavidin-coated surfaces provide more information on glycan-CBP interactions via association and dissociation curves. The presented method is easy and fast, and the required instrumentation is available in many laboratories. The assay is very sensitive given that both the mass spectrometric analysis and the microtitration plate binding assay can be performed on femtomole amounts of BACH-glycans. This approach should be generally applicable to study and structurally identify carbohydrate ligands of anti-glycan antibodies and lectins.  相似文献   

4.
A procedure is described for the immobilization of monomeric actin so that about 30% of the immobilized protein is competent to bind the monomeric-actin-binding proteins bovine pancreatic deoxyribonuclease I and chicken villin. The intact tertiary structure of the immobilized actin is required to bind these proteins. Using this resin, a method has been developed for the affinity purification of pancreatic deoxyribonuclease I on a reusable actin column. It involves the binding of deoxyribonuclease I to immobilized actin, extensive washing of the column, followed by elution of the bound deoxyribonuclease I with 10 M formamide. After removal of the formamide, the deoxyribonuclease I has a higher specific activity than the starting material and contained no detectable protease or ribonuclease contamination. This preparation should find considerable application in molecular genetic studies where the enzyme is needed free of these particular contaminants. The affinity column should also be useful for the isolation of other, physiologically relevant, monomeric-actin-binding proteins.  相似文献   

5.
The expression of multivalency in the interaction of antibody with immobilized antigen was evaluated by quantitative affinity chromatography. Zones of radioisotopically labeled bivalent immunoglobulin A monomer derived from the myeloma protein TEPC 15 were eluted from columns of phosphorylcholine-Sepharose both in the absence and presence of competing soluble phosphorylcholine. At sufficient immobilized phosphorylcholine concentration, the variation of elution volume of bivalent monomer with soluble ligand was found to deviate from that observed for the univalent binding of the corresponding Fab fragment. In addition, the apparent binding affinity of the bivalent monomer increased with immobilized antigen density. Use of equations relating the variation of elution volume with free ligand concentration for a bivalent binding protein allowed calculation of microscopic single-site binding parameters for the bivalent monomeric antibody to both immobilized and soluble phosphorylcholine. The chromatographic data not only demonstrate the effect of multivalency on apparent binding affinity but also offer a relatively simple means to measure microscopic dissociation constants for proteins participating in bivalent interactions with their ligands.  相似文献   

6.
In the present of this study, two novel polymeric matrixes that are poly(N,N-dimethylacrylamide-co-acrylamide) and poly(N-isopropylacrylamide-co-acrylamide)/kappa-Carrageenan was synthesized and applied for immobilization of lipase. For the immobilization of enzyme, two different immobilization procedures have been carried out via covalently binding and entrapment methods. On the free and immobilized enzymes activities, optimum pH, temperature, storage and thermal stability was investigated. The optimum temperature for free, covalently immobilized and entrapped enzymes was found to be 30, 35 and 30 degrees C, respectively. Optimum pH for both free and immobilized enzymes was also observed at pH 8. Maximum reaction rate (Vmax) and Michaelis-Menten constant (Km) were determined for free and immobilized lipases. Furthermore, the reuse numbers of immobilized enzymes also studied. It was observed that after 40th use in 5 days, the retained activities for covalently immobilized and entrapped lipases were found as 39% and 22%, respectively. Storage and thermal stability of enzyme was also increased by as a result of immobilization procedures.  相似文献   

7.
This review addresses the use of high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) as affinity separation methods to characterise drugs or potential drugs-bio-polymer interactions. Targets for the development of new drugs such as enzymes (IMERs), receptors, and membrane proteins were immobilized on solid supports. After the insertion in the HPLC system, these immobilized bio-polymers were used for the determination of binding constants of specific ligands, substrates and inhibitors of pharmaceutical interest, by frontal analyses and zonal elution methods. The most used bio-polymer immobilization techniques and methods for assessing the amount of active immobilized protein are reported. Examples of increased stability of immobilized enzymes with reduced amount of used protein were shown and the advantages in terms of recovery for reuse, reproducibility and on-line high-throughput screening for potential ligands are evidenced. Dealing with the acquisition of relevant pharmacokinetic data, examples concerning human serum albumin binding studies are reviewed. In particular, papers are reported in which the serum carrier has been studied to monitor the enantioselective binding of chiral drugs and the mutual interaction between co-administered drugs by CE and HPLC. Finally CE, as merging techniques with very promising and interesting application of microscale analysis of drugs' binding parameters to immobilized bio-polymers is examined.  相似文献   

8.
The interaction of proteins with immobilized transition-metal ions proceeds via mechanisms influenced by metal type and degree of coordination, variations in mobile phase constituents, and protein surface architecture at or near the metal binding site(s). The contributions each of these variables make toward the affinity of protein surfaces for immobilized metal ions remain empirical. We have used equilibrium binding analyses to evaluate the influence of pH and competitive binding reagents on the apparent equilibrium dissociation constant (Kd) and binding capacity of immobilized Cu(II) and Ni(II) ions for several model proteins of known three-dimensional structure. Linear Scatchard plots suggested that 8/13 of the proteins evaluated interacted with immobilized metal ions via a single class of operational (Kd = 10-700 microM) binding sites. Those proteins with the highest affinities for the immobilized Cu(II) ions (5/13) showed evidence of multiple, non-identical or nonindependent binding sites. The effects of altered metal type, pH, and concentration of competitive affinity reagents (e.g., imidazole, free metal ions) on the apparent Kd and binding capacity varied in magnitude for individual proteins. The presence of free Cu(II) ions did not detectably alter either the affinity or binding capacity of the proteins for immobilized Cu(II) ions. The expected relationship between the relative chromatographic elution sequence and calculated affinity constants was not entirely evident by evaluation under only one set of conditions. Our results demonstrate the utility of nonchromatographic equilibrium binding analyses for the quantitative evaluation of experimental variables affecting the relative affinity and capacity of immobilized metal ions for proteins. This approach affords the opportunity to improve understanding and to vary the contribution of interaction mechanisms involved.  相似文献   

9.
Oriented immobilization of proteins is an important step in creating protein-based functional materials. In this study, a method was developed to orient proteins on hydroxyapatite (HA) surfaces, a widely used bone implant material, to improve protein bioactivity by employing enhanced green fluorescent protein (EGFP) and β-lactamase as model proteins. These proteins have a serine or threonine at their N-terminus that was oxidized with periodate to obtain a single aldehyde group at the same location, which can be used for the site-specific immobilization of the protein. The HA surface was modified with bifunctional hydrazine bisphosphonates (HBPs) of various length and lipophilicity. The number of functional groups on the HBP-modified HA surface, determined by a 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay, was found to be 2.8 × 10(-5) mol/mg of HA and unaffected by the length of HBPs. The oxidized proteins were immobilized on the HBP-modified HA surface in an oriented manner through formation of a hydrazone bond. The relative protein immobilization amounts through various HBPs were determined by fluorescence and bicinchoninic acid (BCA) assay and showed no significant effect by length and lipophilicity of HBPs. The relative amount of HBP-immobilized EGFP was found to be 10-15 fold that of adsorbed EGFP, whereas the relative amount of β-lactamase immobilized through HBPs (2, 3, 4, 6, and 7) was not significantly different than adsorbed β-lactamase. The enzymatic activity of HBP-immobilized β-lactamase was measured with cefazolin as substrate, and it was found that the catalytic efficiency of HBP-immobilized β-lactamase improved 2-5 fold over adsorbed β-lactamase. The results obtained demonstrate the feasibility of our oriented immobilization approach and showed an increased activity of the oriented proteins in comparison with adsorbed proteins on the same hydroxyapatite surface matrix.  相似文献   

10.
One of the promising methods of preparing antibody arrays is immobilizing antibodies with protein A or protein G, each of which binds specifically to the heavy chain constant (Fc) region of immunoglobulin G (IgG). In this system, antibody immobilization efficiency depends on the number of active Fc binding proteins that need to be immobilized on the surface. Here we have designed and constructed an Fc binding protein with a self-adhering ability that can be immobilized on the hydrophobic surface by simple adsorption. It consists of an Fc binding domain of protein G (G3) and hydrophobic domain of elastin (E72). Direct observation revealed its self-adhering ability on the hydrophobic surface. The enzyme-linked immunosorbent assay (ELISA) showed that it retained antibody binding ability on the surface. The antibody array model was prepared on a hydrophobic microwell glass slide with E72G3, which specifically detect the antigen with a sevenfold greater sensitivity than the G3-treated slide. These results suggest that the E72G3 is useful for simple and effective immobilization of antibodies and can be used to fabricate any immuno devices.  相似文献   

11.
Gel-based microarrays (biochips) consisting of nanoliter and sub-nanoliter gel drops on hydrophobic substrate are a versatile technology platform for immobilization of proteins and other biopolymers. Biochips provide a highly hydrophilic environment, which stabilizes immobilized molecules and facilitates their interactions with analytes. The probes are immobilized simultaneously with gel polymerization, evenly distributed throughout individual elements, and are easily accessible because of large pores. Each element is an isolated nanotube. Applications of biochips in the studies of protein interactions with other proteins, nucleic acids, and glycans are described. In particular, biochips are compatible with MALDI-MS. Biochip-based assay of prostate-specific antigen became the first protein microarray approved for clinical use by a national regulatory agency. In this review, 3-D immobilization is compared with mainstream technologies based on surface immobilization.  相似文献   

12.
Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was used to characterize the product of each step in the preparation of a silica-immobilized N-hydroxysuccinimide (NHS) active ester. The preparation of this NHS active ester linkage was based on a literature procedure for the immobilization of proteins. The DRIFT method was used to guide modification of this literature procedure. The DRIFT method also was used to indicate an impurity entrapped in the 60-A diameter pores of the silica support during the formation of the immobilized active ester. Degradation of the immobilized NHS active ester, stored under either argon or dioxane, can be followed by the DRIFT method. Myoglobin and glycine were allowed to react with the active ester, and the result for this silica support was evaluated by the DRIFT method. Elemental analysis was used to provide information on the loading of the silica-immobilized moieties that were presented for DRIFT analysis.  相似文献   

13.
Cytokines are important mediators coordinating inflammation and wound healing in response to tissue damage and infection. Therefore, immobilization of cytokines on the surface of biomaterials is a promising approach to improve biocompatibility. Soluble cytokines signal through receptors on the cell surface leading to cell differentiation, proliferation, or other effector functions. Random immobilization of cytokines on surfaces will result in a large fraction of inactive protein due to impaired cytokine--receptor interaction. We developed a strategy that combined (i) directed covalent coupling of cytokines, (ii) quantification of coupling efficiency through fluorescence detection, and (iii) a reliable protease cleavage assay to control orientation of coupling. For this purpose, fusion proteins of the SNAP-tag followed by an enterokinase recognition site, yellow fluorescent protein (YFP), and the cytokine of interest being either interleukin-6 (IL-6) or oncostatin M (OSM) were generated. The SNAP-tag is a derivative of O(6)-alkylguanine-DNA alkyltransferase that couples itself covalently to benzylguanine. Bioactivities of the SNAP-YFP-cytokines were shown to be comparable with the nontagged cytokines. Efficient coupling of SNAP-YFP-cytokines to benzylguanine-modified beads was demonstrated by flow cytometry. The fact that enterokinase treatment released most of the fluorescence from the beads is indicative for directed coupling and only marginal adsorptive binding. Cellular responses to SNAP-YFP-cytokine beads were analyzed in cellular lysates and by confocal microscopy indicating that the directionally immobilized cytokines are fully signaling competent with respect to the activation of ERK and STAT3. The strategy presented here is generally applicable for the directed covalent immobilization of fluorescently labeled proteins including the convenient and reliable control of coupling efficiency and orientation.  相似文献   

14.
The reversible, oriented immobilization of proteins on solid surfaces is a prerequisite for the investigation of molecular interactions and the controlled formation of supramolecular assemblies. This paper describes a generally applicable method using a synthetic chelator thioalkane that can be self-assembled on gold surfaces. The reversible binding of an anti-lysozyme F(ab) fragment modified with a C-terminal hexahistidine extension was monitored and the apparent dissociation constants determined using surface plasmon resonance. Infra-red spectroscopy demonstrated that the secondary structure of the protein was unaffected by the immobilization process. The retention of functionality of the immobilized protein was also successfully demonstrated. Given the mild reaction conditions and reversibility, this method of oriented immobilization of proteins opens possibilities for the development of biosensors.  相似文献   

15.
Affinity tags are often used to accomplish recombinant protein purification using immobilized metal affinity chromatography. Success of the tag depends on the chelated metal used and the elution profile of the host cell proteins. Zn(II)-iminodiacetic acid (Zn(II)-IDA) may prove to be superior to either immobilized copper or nickel as a result of its relatively low binding affinity for cellular proteins. For example, almost all Escherichia coli proteins elute from Zn(II)-IDA columns between pH 7.5 and 7.0 with very little cellular protein emerging at pH values lower than 7.0. Thus, a large portion of the Zn(II)-IDA elution profile may be free of contaminant proteins, which can be exploited for one-step purification of a target protein from raw cell extract. In this paper we have identified several fusion tags that can direct the elution of the target protein to the low background region of the Zn(II)-IDA elution profile. These tags allow targeting of proteins to different regions of the elution profile, facilitating purification under mild conditions.  相似文献   

16.
A gene fusion approach to simplify protein immobilization and purification is described. A gene encoding the protein of interest is fused to a gene fragment encoding the affinity peptide Ala-His-Gly-His-Arg-Pro. The expressed fusion proteins can be purified using immobilized metal affinity chromatography. A vector, designed to ensure obligate head-to-tail polymerization of oligonucleotide linkers was constructed by in vitro mutagenesis. A linker encoding the affinity peptide, was synthesized and polymerized to two, four and eight copies. These linkers were fused to the 3' end of a structural gene encoding a two-domain protein A molecule, ZZ, and to the 5' end of a gene encoding beta-galactosidase. Fusion proteins, of both types, with zero or two copies of the linker showed little or no binding to immobilized Zn2+, while a relatively strong interaction could be observed for the fusions based on four or eight copies of the linker. Using a pH gradient, the ZZ fusions were found to be eluted from the resin at different pHs depending on the number of the affinity peptide. These results demonstrate that genetic engineering can be used to facilitate purification and immobilization of proteins to immobilized Zn2+ and that the multiplicity of the affinity peptide is an important factor determining the binding characteristics.  相似文献   

17.
We describe the use of the SBP-tag, a new streptavidin-binding peptide, for both the one-step purification and the detection of recombinant proteins. The SBP-tag sequence is 38 amino acids long and binds to streptavidin with an equilibrium dissociation constant of 2.5 nM. We demonstrate that a single-step purification of SBP-tagged proteins from bacterial extract yields samples that are more pure than those purified using maltose-binding protein or the His-tag. The capacity of the immobilized streptavidin used to purify SBP-tagged proteins is about 0.5 mg per milliliter of matrix, which is high enough to isolate large quantities of proteins for further study. Also, the elution conditions from the streptavidin column are very mild and specific, consisting of the wash buffer plus biotin. This combination of high-affinity, high-yield, mild elution conditions, and simplicity of use makes the SBP-tag suitable for high-throughput protein expression/purification procedures, including robotically manipulated protocols with microtiter plates. Additionally, the SBP-tag can be used for detection since a wide variety of streptavidin-conjugated fluorescent and enzymatic systems are commercially available. We also present a new, rapid, method for the measurement of protein-protein, protein-peptide, or protein-small molecule equilibrium dissociation constants that require as little as 1 fmol of labeled protein. We call this method the spin-filter binding inhibition assay.  相似文献   

18.
A new method for preparing immobilized alpha1-acid glycoprotein (AGP) for use in drug-protein binding studies was developed and optimized. In this approach, periodate was used under mild conditions to oxidize the carbohydrate chains in AGP for attachment to a hydrazide-activated support. The final conditions chosen for this oxidation involved the reaction of 5.0 mg/mL AGP at 4 degrees C and pH 7.0 with 5-20 mM periodic acid for 10 min. These conditions helped maximize the immobilization of AGP without significantly affecting its activity. This method was evaluated by using it to attach AGP to silica for use in high-performance affinity chromatography and self-competition zonal elution studies. In work with R- and S-propranolol, only one type of binding site was observed for both enantiomers on the immobilized AGP, in agreement with previous studies using soluble AGP. The association equilibrium constants measured for the immobilized AGP with R- and S-propranolol at pH 7.4 and 37 degrees C were 2.7 x 10(6) and 4.2 x 10(6) M(-1), respectively, with linear van't Hoff plots being obtained between 5 and 37 degrees C. Work performed with other drugs also gave good agreement between the behavior seen for immobilized AGP and that for soluble AGP. The same immobilization method described in this work could be used to attach AGP to other materials, such as those used for surface plasmon resonance or alternative biosensors.  相似文献   

19.
The so-called ion-step method is a novel potentiometric approach that can detect protein adsorbed onto the gate area of modified ion-sensitive field-effect transistors (ISFETs). In this report, a generic technology is described for immobilization of peptides and proteins to the ISFET gate in order to confer specific binding properties to the ISFET. For this, the surface of the ISFET was covered with a monolayer of Amino beads (diameter, 0.9 microm) followed by immobilization of protein ligands onto these beads. Amino beads are latex spheres that contain primary amino groups at the outer surface. Preactivation of the latex-bound amino groups with glutaraldehyde, and consecutive incubation with polylysine resulted in covalent immobilization of this polyamine, as revealed by ion stepping measurements. For ImmunoFET applications, human serum albumin (HSA) was immobilized onto the Amino bead-covered ISFETs, by passive adsorption but also by covalent coupling. Resulting devices were used for qualitative detection of alpha-HSA antibodies by means of the ion step method. The binding of antibody was very specific and fast (most of the binding was accomplished in 15 min) with signal yields up to 17 mV. Efforts to increase the antibody-binding capacity of the solid phase on the ISFET exploiting amino group activation (with glutaraldehyde or other homobifunctional cross linkers) before HSA coupling, did not improve signal yield. The bead technology described in this report is an easy, generic method for coating the ISFET with a solid phase that, using the ion-step method, can be applied to immunosensing.  相似文献   

20.
The last years, there is a steadily growing demand for methods and materials appropriate to create patterns of biomolecules for bioanalytical applications. Here, a photolithographic method for patterning biomolecules onto a silicon surface coated with a polymeric layer of high protein binding capacity is presented. The patterning process does not affect the polymeric film and the activity of the immobilized onto the surface biomolecules. Therefore, it permits sequential immobilization of different biomolecules on spatially distinct areas on the same solid support. The polymeric layer is based on a commercially available photoresist (AZ5214) that is cured at high temperature in order to provide a stable substrate for creation of protein microarrays by the developed photolithographic process. The photolithographic material consists of a (meth)acrylate copolymer and a sulfonium salt as a photoacid generator, and it is lithographically processed by thermal treatment at temperatures 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号