首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ubiquitin-dependent protein degradation system has recently been implicated in downregulation of signal transducing receptors. Growth hormone receptor (GHR) cDNA was transfected into Chinese hamster ovary cells, which exhibit a temperature-sensitive defect in ubiquitin conjugation (CHO-ts20), as well as into wild-type cells (CHO-E36). Upon binding of growth hormone (GH), two GHR polypeptides dimerize and initiate signal transduction. In CHO-E36 and in CHO-ts20 at the permissive temperature the GHR was ubiquitinated and degraded in a GH-dependent fashion. However, at the non-permissive temperature in CHO-ts20 cells, neither GH-dependent uptake nor degradation of the GHR was observed, while in CHO-E36 cells both GHR uptake and degradation were accelerated. Incubation of CHO-E36 cells with inhibitors of endosomal/lysosomal function (NH4Cl, bafilomycin A1) markedly reduced ligand-induced GHR degradation. Our results indicate that a functional ubiquitin conjugating system is required for GH-induced endocytosis and that degradation of both the exoplasmic and cytoplasmic portions of the GHR occurs within the endosomal/lysosomal compartment.  相似文献   

2.
Synaptic plasticity -- the modulation of synaptic strength between a presynaptic terminal and a postsynaptic dendrite -- is thought to be a mechanism that underlies learning and memory. It has become increasingly clear that regulated protein synthesis is an important mechanism used to regulate the protein content of synapses that results in changes in synaptic strength. Recent experiments have highlighted a role for the opposing process, that is, regulated protein degradation via the ubiquitin-proteasome system, in synaptic plasticity. These recent findings raise exciting questions as to how proteasomal activity can regulate synapses over different temporal and spatial scales.  相似文献   

3.
Both ubiquitin conjugation and ubiquitin-dependent degradation of chicken egg white lysozyme in a reticulocyte lysate depend on the presence of a reducing agent. We present evidence that the reduction of a specific disulfide bond, namely that at Cys6-Cys127, facilitates ubiquitination and is a prerequisite to the formation of a multiubiquitin chain on one of at least four chain initiation sites on lysozyme. The Cys6-Cys127 disulfide bond in lysozyme can be specifically reduced, and the modified protein can be isolated after carboxymethylation of the 2 resulting cysteines. This modified lysozyme no longer requires the presence of a reducing agent for ubiquitin conjugation and degradation. Inhibition of ubiquitination by the dipeptide Lys-Ala revealed that this modified lysozyme, like the unmodified protein, is recognized via the binding of the ubiquitin protein ligase, E3, to the substrate's N-terminal lysyl residue. Both the rate and the extent of ubiquitin-lysozyme conjugation, however, are significantly higher with this modified substrate. Likewise, ubiquitin-dependent degradation of 6,127-reduced/carboxymethylated lysozyme was 2-4-fold faster than degradation of the unmodified counterpart. These results are consistent with an interpretation that the modified lysozyme mimics an intermediate formed at the rate-limiting step of the degradation of lysozyme in the reticulocyte lysate. Reduction of the Cys6-Cys127 disulfide bond is expected to unhinge the N-terminal region of lysozyme, and we propose that the recognition of this otherwise stable protein by the ubiquitin pathway is due to facilitated binding of E3 that results from such a conformational transition.  相似文献   

4.
5.
In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The pair of centrioles, which are the core components of the centrosome, duplicate once per cell cycle. Centrosomes play a pivotal role in orchestrating the formation of the bipolar spindle during mitosis. Recent studies have linked centrosomal activity on centrioles or centriole-associated structures to cytokinesis and cell cycle progression through G1 into the S phase. In this study, we have identified centrobin as a centriole-associated protein that asymmetrically localizes to the daughter centriole. The silencing of centrobin expression by small interfering RNA inhibited centriole duplication and resulted in centrosomes with one or no centriole, demonstrating that centrobin is required for centriole duplication. Furthermore, inhibition of centriole duplication by centrobin depletion led to impaired cytokinesis.  相似文献   

6.
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin‐dependent turnover of key proteins. Here, we identified a novel plant U‐box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE‐ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA‐insensitive mutants abi1‐1 and abi2‐1, but enhanced in the ABA‐hypersensitive mutant era1‐3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin‐dependent degradation via the 26S proteasome to prevent premature senescence.  相似文献   

7.
The Drosophila gene neuralized (neur) has long been recognized to be essential for the proper execution of a wide variety of processes mediated by the Notch (N) pathway, but its role in the pathway has been elusive. In this report, we present genetic and biochemical evidence that Neur is a RING-type, E3 ubiquitin ligase. Next, we show that neur is required for proper internalization of Dl in the developing eye. Finally, we demonstrate that ectopic Neur targets Dl for internalization and degradation in a RING finger-dependent manner, and that the two exist in a physical complex. Collectively, our data indicate that Neur is a ubiquitin ligase that positively regulates the N pathway by promoting the endocytosis and degradation of Dl.  相似文献   

8.
Native polyacrylamide gels of extracellular proteins produced by several Streptomyces isolates grown with suberin were assayed in situ for esterase activity. Two pathogenic isolates of Streptomyces scabies from different geographical regions were found to produce a similar esterase activity that was not produced by nonpathogenic strains. After treatment with EDTA, suberin no longer induced esterase production. Expression was restored when EDTA-treated suberin was supplemented with zinc. The optimal concentration of zinc required for esterase production was 2 microM. This esterase was purified from one of the pathogenic isolates and characterized. The enzyme was 38,000 daltons when determined by gel filtration on Sephadex G-100 and 36,000 daltons when determined by denaturing polyacrylamide gel electrophoresis. The esterase showed maximal activity in sodium phosphate buffer above pH 8.0, was stable to temperatures of up to 60 degrees C, and had an apparent Km of 125 microM p-nitrophenyl butyrate.  相似文献   

9.
The ubiquitin pathway for protein degradation.   总被引:22,自引:0,他引:22  
Cellular proteins are marked for selective degradation by their ligation to the polypeptide ubiquitin. Recent studies have revealed information on the mechanisms involved in the selection of proteins for ligation to ubiquitin and on the mode of degradation of ubiquitinated proteins. Much remains to be learned about the high selectivity of this degradation pathway. Recent evidence that the cell-cycle regulatory proteins, cyclins, are degraded by the ubiquitin pathway points the way to future challenges in ubiquitin research.  相似文献   

10.
In acute promyelocytic leukaemia (APL), the promyelocytic leukaemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). This disease can be treated effectively with arsenic, which induces PML modification by small ubiquitin-like modifiers (SUMO) and proteasomal degradation. Here we demonstrate that the RING-domain-containing ubiquitin E3 ligase, RNF4 (also known as SNURF), targets poly-SUMO-modified proteins for degradation mediated by ubiquitin. RNF4 depletion or proteasome inhibition led to accumulation of mixed, polyubiquitinated, poly-SUMO chains. PML protein accumulated in RNF4-depleted cells and was ubiquitinated by RNF4 in a SUMO-dependent fashion in vitro. In the absence of RNF4, arsenic failed to induce degradation of PML and SUMO-modified PML accumulated in the nucleus. These results demonstrate that poly-SUMO chains can act as discrete signals from mono-SUMOylation, in this case targeting a poly-SUMOylated substrate for ubiquitin-mediated proteolysis.  相似文献   

11.
Using human cyclin D1 as the "bait" in a yeast two-hybrid system, together with a HL60 cDNA library, we identified a novel human nuclear protein designated DIP1. This protein is expressed in a variety of cell types, and in fibroblasts its level remains constant throughout the cell cycle. However, the level of this protein increases severalfold during the differentiation of HL60 cells. The DIP1 protein can be phosphorylated in vitro by a cellular kinase and this activity reaches its maximum in extracts obtained from cells in the G1 phase of the cell cycle. DIP1 contains a helix-loop-helix motif but lacks an adjacent basic DNA-binding domain, thus resembling the Id family of proteins. The dip1 gene is located on human chromosome 16p11.2-12, a locus that is amplified in several types of human cancer. These results suggest that DIP1 may be involved in the control of gene expression and differentiation, but its precise function remains to be determined.  相似文献   

12.
Oxidatively modified proteins that accumulate in aging and many diseases can form large aggregates because of covalent cross-linking or increased surface hydrophobicity. Unless repaired or removed from cells, these oxidized proteins are often toxic, and threaten cell viability. Most oxidatively damaged proteins appear to undergo selective proteolysis, primarily by the proteasome. Previous work from our laboratory has shown that purified 20 S proteasome degrades oxidized proteins without ATP or ubiquitin in vitro, but there have been no studies to test this mechanism in vivo. The aim of this study was to determine whether ubiquitin conjugation is necessary for the degradation of oxidized proteins in intact cells. We now show that cells with compromised ubiquitin-conjugating activity still preferentially degrade oxidized intracellular proteins, at near normal rates, and this degradation is still inhibited by proteasome inhibitors. We also show that progressive oxidation of proteins such as lysozyme and ferritin does not increase their ubiquitinylation, yet the oxidized forms of both proteins are preferentially degraded by proteasome. Furthermore, rates of oxidized protein degradation by cell lysates are not significantly altered by addition of ATP, excluding the possibility of an energy requirement for this pathway. Contrary to earlier popular belief that most proteasomal degradation is conducted by the 26 S proteasome with ubiquitinylated substrates, our work suggests that oxidized proteins are degraded without ubiquitin conjugation (or ATP hydrolysis) possibly by the 20 S proteasome, or the immunoproteasome, or both.  相似文献   

13.
Cells must regulate the abundance and activity of numerous nutrient transporters in different organelle membranes to achieve nutrient homeostasis. As the recycling center and major storage organelle, lysosomes are essential for maintaining nutrient homeostasis. However, very little is known about mechanisms that govern the regulation of its membrane proteins. In this study, we demonstrated that changes of Zn2+ levels trigger the downregulation of vacuolar Zn2+ transporters. Low Zn2+ levels cause the degradation of the influx transporter Cot1, whereas high Zn2+ levels trigger the degradation of the efflux channel Zrt3. The degradation process depends on the vacuole membrane recycling and degradation pathway. Unexpectedly, we identified a RING domain–containing E3 ligase Tul1 and its interacting proteins in the Dsc complex that are important for the ubiquitination of Cot1 and partial ubiquitination of Zrt3. Our study demonstrated that the Dsc complex can function at the vacuole to regulate the composition and lifetime of vacuolar membrane proteins.  相似文献   

14.
Cell junctions are essential to maintain polarity and tissue integrity. Epithelial cell junctions are composed of distinct sub-compartments that together ensure the strong adhesion between neighboring cells. In Caenorhabditis elegans epithelia, the apical junction (CeAJ) forms a single electron-dense structure, but at the molecular level it is composed of two sub-compartments that function redundantly and localize independently as two distinct but adjacent circumferential rings on the lateral plasma membrane. While investigating the role of the multi PDZ-domain containing protein MAGI-1 during C. elegans epidermal morphogenesis, we found that MAGI-1 localizes apical to both the Cadherin/Catenin (CCC) and AJM-1/DLG-1 (DAC) containing sub-domains. Removal of MAGI-1 function causes a loss of junctional compartmentalization along the lateral membrane and reduces the overall robustness of cell-cell adhesion mediated by either type of cell junctions. Our results suggest that MAGI-1 functions as an “organizer” that ensures the correct segregation of different cell adhesion complexes into distinct domains along the lateral plasma membrane. Thus, the formation of stable junctions requires the proper distribution of the CCC and DAC adhesion protein complexes along the lateral plasma membrane.  相似文献   

15.
A calcium and calmodulin-dependent protein kinase has been purified from rat brain. It was monitored during the purification by its ability to phosphorylate the synaptic vesicle-associated protein, synapsin I. A 300-fold purification was sufficient to produce kinase that is 90-95% pure as determined by scans of stained sodium dodecyl sulfate-polyacrylamide gels and has a specific activity of 2.9 mumol of 32P transferred per min/mg of protein. Thus, the kinase is a relatively abundant brain enzyme, perhaps comprising as much as 0.3% of the total brain protein. The Stokes radius (95 A) and sedimentation coefficient (16.4 S) of the kinase indicate a holoenzyme molecular weight of approximately 650,000. The holoenzyme is composed of three subunits as judged by their co-migration with kinase activity during the purification steps and co-precipitation with kinase activity by a specific anti-kinase monoclonal antibody. The three subunits have molecular weights of 50,000, 58,000, and 60,000, and have been termed alpha, beta', and beta, respectively. The alpha- and beta-subunits are distinct peptides, however, beta' may have been generated from beta by proteolysis. All three of these subunits bind calmodulin in the presence of calcium and are autophosphorylated under conditions in which the kinase is active. The subunits are present in a ratio of about 3 alpha-subunits to 1 beta/beta'-subunit. We therefore postulate that the 650,000-Da holoenzyme consists of approximately 9 alpha-subunits and 3 beta/beta'-subunits. The abundance of this calmodulin-dependent protein kinase indicates that its activation is likely to be an important biochemical response to increases in calcium ion concentration in neuronal tissue.  相似文献   

16.
The regulated turnover of endoplasmic reticulum (ER)–resident membrane proteins requires their extraction from the membrane lipid bilayer and subsequent proteasome-mediated degradation. Cleavage within the transmembrane domain provides an attractive mechanism to facilitate protein dislocation but has never been shown for endogenous substrates. To determine whether intramembrane proteolysis, specifically cleavage by the intramembrane-cleaving aspartyl protease signal peptide peptidase (SPP), is involved in this pathway, we generated an SPP-specific somatic cell knockout. In a stable isotope labeling by amino acids in cell culture–based proteomics screen, we identified HO-1 (heme oxygenase-1), the rate-limiting enzyme in the degradation of heme to biliverdin, as a novel SPP substrate. Intramembrane cleavage by catalytically active SPP provided the primary proteolytic step required for the extraction and subsequent proteasome-dependent degradation of HO-1, an ER-resident tail-anchored protein. SPP-mediated proteolysis was not limited to HO-1 but was required for the dislocation and degradation of additional tail-anchored ER-resident proteins. Our study identifies tail-anchored proteins as novel SPP substrates and a specific requirement for SPP-mediated intramembrane cleavage in protein turnover.  相似文献   

17.
alpha-Actinin is required for the organization and function of the contractile machinery of muscle. In order to understand more precisely the molecular mechanisms by which alpha-actinin might contribute to the formation and maintenance of the contractile apparatus within muscle cells, we performed a screen to identify novel alpha-actinin binding partners present in chicken smooth muscle cells. In this paper, we report the identification, purification, and characterization of a 36-kDa smooth muscle protein (p36) that interacts with alpha-actinin. Using a variety of in vitro binding assays, we demonstrate that the association between alpha-actinin and p36 is direct, specific, and saturable and exhibits a moderate affinity. Furthermore, native co-immunoprecipitation reveals that the two proteins are complexed in vivo. p36 is expressed in cardiac muscle and tissues enriched in smooth muscle. Interestingly, in skeletal muscle, a closely related protein of 40 kDa (p40) is detected. The expression of p36 and p40 is dramatically up-regulated during smooth and skeletal muscle differentiation, respectively, and p40 colocalizes with alpha-actinin at the Z-lines of differentiated myotubes. We have established the relationship between p36 and p40 by molecular cloning of cDNAs that encode both proteins and have determined that they are the products of a single gene. Both proteins display an identical N-terminal PDZ domain and an identical C-terminal LIM domain; an internal 63-amino acid sequence present in p36 is replaced by a unique 111-amino acid sequence in p40. Analysis of the sequences of p36 and p40 suggest that they are the avian forms of the actinin-associated LIM proteins (ALPs) recently described in rat (Xia, H., Winokur, S. T., Kuo, W.-L., Altherr, M. R., and Bredt, D. S. (1997) J. Cell Biol. 139, 507-515). The expression of the human ALP gene has been postulated to be affected by mutations that cause facioscapulohumeral muscular dystrophy; thus, the characterization of ALP function may ultimately provide insight into the mechanism of this disease.  相似文献   

18.
In eukaryotes, endoplasmic reticulum-associated degradation (ERAD) functions in cellular quality control and regulation of normal ER-resident proteins. ERAD proceeds by the ubiquitin-proteasome pathway, in which the covalent attachment of ubiquitin to proteins targets them for proteasomal degradation. Ubiquitin-protein ligases (E3s) play a crucial role in this process by recognizing target proteins and initiating their ubiquitination. Here we show that Hrd1p, which is identical to Der3p, is an E3 for ERAD. Hrd1p is required for the degradation and ubiquitination of several ERAD substrates and physically associates with relevant ubiquitin-conjugating enzymes (E2s). A soluble Hrd1 fusion protein shows E3 activity in vitro - catalysing the ubiquitination of itself and test proteins. In this capacity, Hrd1p has an apparent preference for misfolded proteins. We also show that Hrd1p functions as an E3 in vivo, using only Ubc7p or Ubc1p to specifically program the ubiquitination of ERAD substrates.  相似文献   

19.
20.
Many factors which induce the stress response (heat shock protein synthesis) in eukaryotes also cause the formation of aberrant proteins. Such aberrant proteins are usually rapidly and selectively degraded in cells. Temperature step-up accelerates the degradation of a subset of normally stable proteins. This effect is transient and is confined to a narrow range of heat shock temperatures above which proteolysis is inhibited. The time course and extent of proteolysis elicited by a mild heat shock is consistent with data on the thermal transitions of cellular proteins. Biochemical and genetic evidence strongly supports the view that the ubiquitin system is primarily responsible for heat- or stress-damaged protein degradation in eukaryotic cells. It still remains to be determined how stress-damaged proteins are recognized by the ubiquitin system and selected for degradation. Ubiquitin-protein ligases (E3's) which attach multi-ubiquitin chains to proteins are thought to be responsible for the selection of proteins for degradation. Several species of E3 have recently been characterized. However, none of the known E3's seems to fulfil the role of selecting aberrant proteins for breakdown. Heat shock proteins which are thought to repair unfolded or misfolded proteins probably have a complementary function to the ubiquitin system which destroys damage proteins. The relationship between the ubiquitin system and the regulation of heat shock protein synthesis, which is still not understood, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号