首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal cycles of concentrations and microbial uptake of dissolved free amino acids and the polyamine, putrescine, were followed during summer stratification of a coastal salt pond. Stratification began in May and was clearly seen in profiles of temperature, salinity, pH and alkalinity. Primary production exhibited a mid-August maximum and the O2-H2S interface shoaled at that time. POC and phytopigments roughly followed the pattern of primary production. Cycling of putresince, like the amino acids, was strongly influenced by primary production and microbial decomposition. Putrescine concentration profiles appeared to follow the pattern of primary production more closely, while amino acids appeared to follow the pattern of microbial production. The absence of production of putrescine during the decomposition of dissolved ornithine and the correlation of putrescine concentration with primary production suggest a direct source from algae in the water column.Microbial uptake of amino acids and putrescine together accounted for 60–90% of the bacterial C production measured in oxic waters and almost 300% of that measured in the anoxic bottom layer. Since other organic carbon and nitrogen compounds are also being taken up, these data suggest that tracer uptake methods as we used them may overestimate the true microbial uptake rates, or release of other organic compounds by microbes occurs at the same time. Further work on carbon and nitrogen budgets is needed to resolve the apparent imbalance between organic C and N incorporation and bacterial production.  相似文献   

2.
3.
The uptake of amino acids and inorganic nitrogen by roots of Puccinellia phryganodes was examined to assess the potential contribution of soluble organic nitrogen to plant nitrogen uptake in Arctic coastal marshes, where free amino acids constitute a substantial fraction of the soil‐soluble N pool. Short‐term excised root uptake experiments were performed using tillers grown hydroponically under controlled conditions in the field. The percentage reductions in ammonium uptake at moderate salinity (150 mm NaCl) compared with uptake at low salinity (50 mm NaCl) were double those of glycine, but glycine uptake was more adversely affected than ammonium uptake by low temperatures. Glycine uptake was higher at pH 5·7 than at pH 7·0 or 8·2. The glycine uptake was up‐regulated in response to glycine, whereas ammonium uptake was up‐regulated in response to ammonium starvation. Nitrate uptake was strongly down‐regulated when tillers were grown on either ammonium or glycine. In contrast to N‐starved roots, which absorbed ammonium ions more rapidly than glycine, the roots grown on glycine, ammonium and nitrate and not N‐starved prior to uptake absorbed glycine as rapidly as ammonium and nitrate ions combined. Overall, the results indicate that amino acids are probably an important source of nitrogen for P. phryganodes in Arctic coastal marshes.  相似文献   

4.
研究了不同温度(1 ℃、15 ℃和25 ℃)对3种园艺生产系统(有机生产系统OS、转换期生产系统TS、常规生产系统CS)土壤中外源添加氨基酸、多肽的矿化及其吸收动力学特性的影响.结果表明:随着温度的升高,外源添加的氨基酸和多肽在土壤中的矿化速度加快.在1 ℃、15 ℃和25 ℃下,3种供试土壤中谷氨酸(Glu)的平均半衰期分别为13.3、6.8和5.5 h;而谷氨酰 苯丙氨酸(Glu-Phe)的平均半衰期则分别为29.7、7.5和4.4 h.土壤的氨基酸、多肽的吸收动力学试验表明,土壤对氨基酸、多肽的吸收速率随着外源添加氨基酸和多肽浓度及温度的增加而提高.土壤对氨基酸的最大吸收速率(Vmax)和亲和力(Km)及对多肽的吸收速率(Vh)均随温度的升高而增大.在0~2.5 mmol·L-1浓度范围内,土壤对氨基酸的吸收动力学曲线遵循经典的米氏动力学曲线,而多肽则表现为线性模式.3种园艺生产系统土壤的氨基酸和多肽的周转速率、吸收动力学参数(Vmax、Km和Vh)均表现为OS>TS>CS.总之,温度显著影响了氨基酸、多肽在土壤中的矿化及其吸收动力学特性.  相似文献   

5.
Landscape patterns of free amino acids in arctic tundra soils   总被引:13,自引:3,他引:13  
Concentrations of free amino acids were measured in soils from four major ecosystem types in arctic Alaska. Total free amino acid concentrations were several-fold higher than ammonium (the major form of inorganic nitrogen) in water extracts of soils. The dominant free amino acids in these soils were glycine, aspartic acid, glutamic acid, serine, and arginine. Concentrations of total amino acids ranged 5-fold across communities, being highest in tussock tundra and lowest in wet meadows. Incubation experiments indicate that the turnover of amino acids is rapid, which suggests high rates of gross nitrogen mineralization in these soils. The high concentrations and dynamic nature of soil free amino acids suggest that this nitrogen pool is a significant component of nitrogen cycling in these tundra ecosystems.  相似文献   

6.
The uptake of 15N-labelled alanine, ammonium and nitrate was studied in ectomycorrhizal morphotypes of intact Pinus sylvestris seedlings. PCR-RFLP analysis of the ITS-region of fungal rDNA was used to identify the morphotypes. Seedlings were grown in forest soil collected at an experimental site in southern Sweden. The treatments compared were a control, N fertilisation (600 kg N ha-1 as urea), sulfur application (1200 kg S ha-1) and lime application (6000 kg CaCO3 ha-1). The forest, which had been dominated by Picea abies, was clear-cut two years before the forest soil was sampled. Soil was also collected from an adjacent standing forest. The aim of the present study was to detect changes in the ectomycorrhizal communities in forest soils and relate these changes to the functional parameter of uptake of nitrogen from organic (alanine and protein) and inorganic (ammonium and nitrate) sources.Liming resulted in the detection of a morphotype not found in other samples, and one morphotype was only found in samples from the standing forest (the fungi in these two morphotypes could not be identified). All mycorrhizal root tips showed a higher 15N concentration after exposure to different nitrogen forms than non-mycorrhizal long roots. Uptake of15 N from a labelled solution of alanine or ammonium was higher (about tenfold) than uptake from a 15N-labelled solution of nitrate. Uptake of ammonium and alanine varied between 0.2 and 0.5 mg N g-1 h-1 and between 0.1 and 0.33 mg N g-1 h-1, respectively, among the different morphotypes.In seedlings grown in the control soil and in soil from standing forest, alanine and ammonium were taken up to a similar degree from a supply solution by all morphotypes, whereas ammonium uptake was higher than alanine uptake in seedlings grown in lime-treated soil (about twofold) and, to a lesser extent, in the nitrogen- and sulfur-treated soils. The higher ammonium uptake by morphotypes from the limed soil was confirmed in pure culture studies. In cases where ammonium was used as the N source, an isolate of the S. variegatus morphotype collected in the limed soil produced more biomass compared with isolates of S. variegatus collected in nitrogen- or sulphur-treated soil. One isolate of a silvery white morphotype produced about equal amounts of biomass on alanine and ammonium, whereas all S. variegatus isolated performed better with ammonium as their N source. Based on the results it is hypothesised that liming can induce a shift in the ectomycorrhizal community, favouring individuals that mainly utilise inorganic nitrogen over those that primarily utilise organic nitrogen.  相似文献   

7.
植物分泌有机酸在提高土壤养分有效性方面起到重要作用。为了解喀斯特地区不同植被恢复阶段土壤有机酸含量季节性变化与氮磷有效性的关系,在灌木林和原生林各选择3种优势植物,测定雨季和旱季两个季节根际土和非根际土的有机酸含量、碳氮磷含量和比值、有效性氮磷含量及微生物生物量碳。结果表明:原生林植物根际土的草酸含量高于灌木林,而苹果酸和乙酸含量则低于灌木林;根际土草酸含量均高于非根际土; 2个植被根际土和非根际土的草酸含量在雨季高于旱季,而苹果酸和乙酸含量则低于旱季;土壤草酸含量与有机碳、全氮、全磷和N∶P值呈显著正相关,与C∶N呈显著负相关;土壤有效氮和有效磷与草酸和微生物生物量碳呈显著正相关。上述结果表明,植物分泌有机酸的季节性变化与土壤养分状态和自身养分需求相关,而有机酸耦合微生物对养分有效性的提高具有积极的作用。因此,根际土的有机酸季节变化可能是喀斯特生态系统中植物适应土壤养分限制的一种重要机制。  相似文献   

8.
Nitrate inhibits symbiotic N2 fixation and a number of hypotheses concerned with NO3 assimilation have been suggested to explain this inhibition. These hypotheses were tested using a pea ( Pisum sativum L. cv. Juneau) with normal nitrate reductase NR; (EC 1,6,6,4) activity and two mutants of cv. Juneau, A317 and A334, with impaired NR activity. The plants were inoculated with three strains of Rhizobium leguminosarum and grown for 3 weeks in N-free medium, followed by 1 week in medium supplemented with 0, 5 or 10 m M KNO3 before harvesting. NO3 was taken up at comparable rates by the parent and the mutants and accumulated in leaf and stem tissue of the latter. Acetylene reduction rates were inhibited similarly in both the parent and mutants in the presence of KNO3 but there were differences among rhizobial strains. Starch concentration of the nodules decreased by 46% in the presence of KNO3 and there were differences among rhizobial strains but not among pea genotypes. Malate and succinate accumulated in nodules in the presence of KNO3. These data are not consistent with the photosynthate deprivation hypothesis as a primary mechanism for NO3 inhibition of N2 fixation since NO3 affected the nodule carbohydrate composition of all three pea genotypes in a similar manner. The lack of correlation between NR activity and NO3 inhibition of N2 fixation suggests that NO3 assimilation may be only indirectly involved in the inhibition phenomenon.  相似文献   

9.
Warren  G. P.  Whitehead  D. C. 《Plant and Soil》1988,112(2):155-165
The available N of 27 soils from England and Wales was assessed from the amounts of N taken up over a 6-month period by perennial ryegrass grown in pots under uniform environmental conditions. Relationships between availability and the distribution of soil N amongst various fractions were then examined using multiple regression. The relationship: available soil N (mg kg–1 dry soil)=(Nmin×0.672)+(Ninc×0.840)+(Nmom×0.227)–5.12 was found to account for 91% of the variance in available soil N, where Nmin=mineral N, Ninc=N mineralized on incubation and Nmom=N in macro-organic matter. The N mineralized on incubation appeared to be derived largely from sources other than the macro-organic matter because these two fractions were poorly correlated. When availability was expressed in terms of available organic N as % of soil organic N (Nao) the closest relationship with other soil characteristics was: Nao=[Ninc×(1.395–0.0347×CNmom]+[Nmom×0.1416], where CNmom=CN ratio of the macro-organic matter. This relationship accounted for 81% of the variance in the availability of the soil organic N.The conclusion that the macro-organic matter may contribute substantially to the available N was confirmed by a subsidiary experiment in which the macro-organic fraction was separated from about 20 kg of a grassland soil. The uptake of N by ryegrass was then assessed on two subsamples of this soil, one without the macro-organic matter and the other with this fraction returned: uptake was appreciably increased by the macro-organic matter.  相似文献   

10.
氮是陆地生态系统生产力的首要限制性养分,利用自然丰度δ15N(15N/14N)可以有效指示生态系统氮循环过程。本试验研究了内蒙古草甸草原土壤与植物系统自然丰度δ15N、土壤净氮矿化潜势的年际变化。结果表明: 2017—2020年,土壤NO3--N含量(9.83~14.79 mg·kg-1)均显著高于NH4+-N含量(3.92~5.00 mg·kg-1);土壤NH4+的δ15N值(13.3‰~18.3‰)显著高于NO3-的δ15N值(3.76‰~6.14‰),土壤NO3-的δ15N值与土壤NO3-含量呈显著负相关;干旱年NH4+的δ15N值相对较高,降水较高或较低年NO3-的δ15N值显著降低。干旱年土壤净氮矿化速率、净氨化速率显著高于湿润年,而土壤硝化速率与年降水量无显著相关性。植物δ15N值与土壤δ15N值无显著相关性,但与植物N含量呈显著负相关;豆科植物与非豆科植物δ15N值、N含量均呈显著正相关,在一定程度上表明豆科植物对非豆科植物的N吸收具有促进作用。研究结果可为草原土壤-植物系统氮循环过程及其对降水变化的响应提供数据支撑。  相似文献   

11.
A long-term comparison between two routine soil nitrogen tests, soil nitrate versus plant indicator method, was performed on the Negev Desert loessial soil in Israel. The Gilat plant indicator method was found to be a better method to reflect the soil nitrogen availability for wheat under field conditions. It was found that 15 to 38 kg ha-1 of NO3-N, measured by nitrate soil test, for each 30 cm soil increment, is not available for plant uptake. This plant unavailable NO3-N background in the soil cannot be leached by repeated irrigation cycles of 100 mm each, or by heavy rains.  相似文献   

12.
Three solution experiments were performed to test the importance of NH 4 + versus NO 3 - +NH 4 + to growth of 23 wild-forest and open-land species, using field-relevant soil solution concentrations at pH 4.5. At N concentrations of 1–200 M growth increased with increasing N supply in Carex pilulifera, Deschampsia flexuosa, Elymus caninus and Bromus benekenii. Geum urbanum was the most N demanding species and had little growth below 200 M. The preference for NH 4 + or NO 3 - +NH 4 + was tested also at pH 4.0; no antagonism was found between NH 4 + and H+, as indicated by similar relative growth in both of the N treatments at both pH levels. Growth in solution with NH 4 + relative to NO 3 - +NH 4 + , 200 M, was negatively related to the mean pH of the field occurrence of the species tested; acid-tolerant species grew equally well with only NH 4 + as with NO 3 - +NH 4 + (Oxalis acetosella, Carex pilulifera, Festuca gigantea, Poa nemoralis, Deschampsia flexuosa, Stellaria holostea, Rumex acetosella), while species of less acid soils were favoured by NO 3 - +NH 4 + (Urtica dioica, Ficaria verna, Melandrium rubrum, Aegopodium podagraria, Geum urbanum, Bromus benekenii, Sanguisorba minor, Melica ciliata, Silene rupestris, Viscaria vulgaris, Plantago lanceolata). Intermediate species were Convallaria majalis, Elymus caninus, Hordelymus europaeus and Milium effusum. No antagonism between NH 4 + and Ca2+, Mg2+ and K+ was indicated by the total uptake of the elements during the experiment.  相似文献   

13.
裴广廷  马红亮  林伟  高人  尹云锋  杨柳明 《生态学报》2015,35(23):7774-7784
为探究氨基酸氮形态对亚热带土壤氮素含量及转化的影响,选择建瓯市万木林保护区的山地红壤为对象,采用室内培养实验法,通过设计60%和90%WHC两种土壤含水量并添加不同性质氨基酸,测定了土壤中铵态氮、硝态氮、可溶性有机氮的含量和氧化亚氮的释放量,分析了可溶性有机碳、土壤p H值的大小变化及其与氮素的相互关系。结果表明:与对照处理相比,氨基酸添加显著增加了土壤NH_4~+-N含量并使土壤p H值升高,且在一定程度上解除了高含水量(90%WHC)对NH_4~+-N产生的抑制,其中甲硫氨基酸的效果最为明显。酸性、碱性、中性氨基酸对土壤NO_3~--N含量和N_2O释放影响不显著,但甲硫氨基酸可显著抑制土壤硝化从而导致NH_4~+-N的积累,并在培养前期抑制土壤N_2O产生而在培养后期促进N_2O释放,总体上促进N_2O释放。60%WHC的氨基酸添加处理较90%WHC条件下降低土壤可溶性有机氮的幅度更大。氨基酸对土壤氮素转化的影响与带电性关系较小,而可能与其分解产物密切相关。可见,不同性质氨基酸处理对森林土壤氮素含量及转化存在不同程度的影响,且甲硫氨基酸对土壤氮素转化的影响机理值得深入研究。  相似文献   

14.
王斌  蒋洋杨  焦加国  刘满强  陈欢  胡锋  李辉信 《生态学报》2015,35(14):4816-4823
通过室内培养试验,研究了赤子爱胜蚓(Eisenia foetida)和威廉环毛蚓(Metaphire guillelmi)对土壤氨基酸组分及含量的影响,并探讨了两种不同生活型蚯蚓作用效果的异同。结果表明:蚯蚓活动可显著改变土壤氨基酸含量,爱胜蚓作用下土壤酸解氨基酸和游离氨基酸分别增加5.08 g/kg和7.72 mg/kg,环毛蚓作用下土壤酸解氨基酸和游离氨基酸分别增加3.86 g/kg和4.44mg/kg。各处理酸解氨基酸均以中性氨基酸所占比例为最大(平均51.9%),酸性氨基酸次之(平均23.3%),而含硫氨基酸(平均14.4%)及碱性氨基酸最少(平均10.4%)。各处理游离氨基酸同样以中性氨基酸为主,平均54.4%,而以碱性氨基酸含量最少,平均仅为7.2%。蚯蚓活动并未改变土壤氨基酸可检出种类,各处理分别检测出16种酸解氨基酸和14种游离氨基酸。土壤酸解氨基酸和游离氨基酸组分含量在蚯蚓作用下均有明显改变:加入爱胜蚓后土壤酸解氨基酸组分中天冬氨酸、精氨酸、甲硫氨酸、丙氨酸、赖氨酸和甘氨酸增幅较高,均在85.7%以上,缬氨酸、苏氨酸、丝氨酸、谷氨酸、亮氨酸、酪氨酸和组氨酸增幅较小在40.7%—62.7%间波动;加入环毛蚓后土壤酸解氨基酸组分中甲硫氨酸、赖氨酸、天冬氨酸、酪氨酸和丙氨酸增幅较大,均在71.9%以上,甘氨酸、精氨酸、异亮氨酸增幅适中,分别为56.8%、55.6%和54.9%;丝氨酸、亮氨酸、苏氨酸、谷氨酸、组氨酸和苯丙氨酸增幅最小,均在40%以下;游离氨基酸组分中组氨酸、精氨酸、甘氨酸、亮氨酸、异亮氨酸和丙氨酸在加入爱胜蚓后增加的幅度较大,增幅在150.0%以上,增幅较为缓和的氨基酸组分有天冬氨酸、苏氨酸、丝氨酸、缬氨酸、谷氨酸和苯丙氨酸,介于58.8%—92.1%之间;环毛蚓作用下,天冬氨酸、精氨酸、丝氨酸和异亮氨酸增幅最大,分别为184.2%、173.3%、163.0%和116.6%;苏氨酸、亮氨酸、缬氨酸和甘氨酸增幅较缓,介于52.3%—92.7%之间;谷氨酸、组氨酸、苯丙氨酸、丙氨酸和甲硫氨酸增幅较低,均在33.1%之下;而半胱氨酸在蚯蚓作用下显著降低,降幅为11.8%。对比两种生活型蚯蚓作用效果可知,土壤氨基酸总含量及各组分含量在爱胜蚓和环毛蚓作用下的增加或减少趋势相同(土壤酸解氨基酸组分缬氨酸除外),但改变幅度却存在明显差异,总体而言,爱胜蚓作用效果优于环毛蚓。  相似文献   

15.
BACKGROUND AND AIMS: Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. METHODS: Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. RESULTS: Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. CONCLUSIONS: V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.  相似文献   

16.
17.
The complexity of the regulatory mechanisms that govern amino acid biosynthesis, particularly in multibranched pathways, frequently results in sensitivity to growth inhibition by exogenous amino acids. Usually the inhibition caused by a given amino acid(s) is relieved by another amino acid(s), thus indicating the cause of inhibition to be a specific interference with endogenous formation of the latter amino acid(s). We recently summarized the evidence that Nicotiana silvestris (and probably most higher plants), in suspension culture, exhibits a separate phenomenon of amino acid mediated growth inhibition called general amino acid inhibition. Every amino acid provokes general amino acid inhibition except for

-glutamine. In fact,

-glutamine completely overcomes general amino acid inhibition. We have now demonstrated that specific amino acid inhibition can be recognized and characterized at the level of growth inhibition without interference caused by general amino acid inhibition by the simple provision of exogenous

-glutamine. Several examples of specific amino acid inhibition of growth were demonstrated in N. silvestris. In one case,

-threonine inhibits growth partially in the presence of

-glutamine. The residual amino acid inhibition was overcome by the additional presence of

-lysine and

-methionine, indicating that exogenous

-threonine specifically inhibits the biosynthesis of both

-lysine and

-methionine. As a second example, the

-valine-mediated inhibition of growth that persisted in the presence of

-glutamine was overcome by

-isoleucine, indicating that exogenous

-valine inhibits

-isoleucine biosynthesis. The use of amino acid analogs as experimental tools for biochemical-genetic studies in higher plants is also complicated by general amino acid inhibition. Conditions were demonstrated under which p-fluorophenylalanine and m-fluorotyrosine could be used as specific antimetabolites of

-phenylalanine and

-tyrosine biosynthesis without interference from general amino acid inhibition. We thus present a rigorous basis for recognition of specific relationships between metabolic branches that can guide detailed enzymological analyses.  相似文献   

18.
19.
Spring barley ( Hordeum vulgare L. cv. Golf) was grown at different nitrate supply rates, controlled by using the relative addition rate technique, in order to elucidate the relationship between nitrate-N supply and root and shoot levels of abscisic acid (ABA). The plants were maintained as (1) standard cultures where nitrate was supplied at relative addition rates (RAs) of 0.03, 0.09 and 0.18 day−1, and (2) split-root cultures at RA 0.09 day−1 but with the nitrate distributed between the two root parts in ratios of 100:0, 80:20 and 60:40. Time-dependent changes in root and shoot concentrations of ABA (determined by radioimmunoassay using a monoclonal antibody) were observed in both standard and split-root cultures during 12 days of acclimation to the different nitrate regimes. However, the ABA responses were similar at all nitrate supply rates. Further experiments were performed with split-root cultures where the distribution of nitrate between the two root parts was reversed from 80:20 to 20:80 so that short-term effects to local perturbations of nitrate supply could be studied without altering whole-plant N absorption. Transient increases in ABA concentrations (maximum of 25 to 40% after 3 to 4 h) were observed in both subroot parts, as well as in xylem sap and shoot tissue. By pruning the root system it was demonstrated that the change in ABA had its origin in the subroot part receiving the increased nitrate supply (i.e. switched from 20 to 80% of the total nitrate supply). The data indicate that ABA responses are easily transmitted between different organs, including transmission from one set of seminal roots to another via the shoot. The data do not provide any indication that long-term nitrate supplies or general nitrogen status of barley plants affect, or are otherwise related to, the average tissue ABA concentrations of roots and shoots.  相似文献   

20.
Past research strongly indicates the importance of amino acids in the N economy of the Arctic tundra, but little is known about the seasonal dynamics of amino acids in tundra soils. We repeatedly sampled soils from tussock, shrub, and wet sedge tundra communities in the summers of 2000 and 2001 and extracted them with water (H2O) and potassium sulfate (K2SO4) to determine the seasonal dynamics of soil amino acids, ammonium (NH4+), nitrate (NO3), dissolved organic nitrogen (DON), dissolved organic carbon (DOC), and phosphate (PO42–). In the H2O extractions mean concentrations of total free amino acids (TFAA) were higher than NH4+ in all soils but shrub. TFAA and NH4+ were highest in wet sedge and tussock soils and lowest in shrub soil. The most predominant amino acids were alanine, arginine, glycine, serine, and threonine. None of the highest amino acids were significantly different than NH4+ in any soil but shrub, in which NH4+ was significantly higher than all of the highest individual amino acids. Mean NO3 concentrations were not significantly different from mean TFAA and NH4+ concentrations in any soil but tussock, where NO3 was significantly higher than NH4+. In all soils amino acid and NH4+ concentrations dropped to barely detectable levels in the middle of July, suggesting intense competition for N at the height of the growing season. In all soils but tussock, amino acid and NH4+ concentrations rebounded in August as the end of the Arctic growing season approached and plant N demand decreased. This pattern suggests that low N concentrations in tundra soils at the height of the growing season are likely the result of an increase in soil N uptake associated with the peak in plant growth, either directly by roots or indirectly by microbes fueled by increased root C inputs in mid-July. As N availability decreased in July, PO42– concentrations in the K2SO4 extractions increased dramatically in all soils but shrub, where there was a comparable increase in PO42– later in the growing season. Previous research suggests that these increases in PO42– concentrations are due to the mineralization of organic phosphorus by phosphatase enzymes associated with soil microbes and plant roots, and that they may have been caused by an increase in organic P availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号