首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
Regulating the balance between self-renewal (proliferation) and differentiation is key to the long-term functioning of all stem cell pools. In the Caenorhabditis elegans germline, the primary signal controlling this balance is the conserved Notch signaling pathway. Gain-of-function mutations in the GLP-1/Notch receptor cause increased stem cell self-renewal, resulting in a tumour of proliferating germline stem cells. Notch gain-of-function mutations activate the receptor, even in the presence of little or no ligand, and have been associated with many human diseases, including cancers. We demonstrate that reduction in CUP-2 and DER-2 function, which are Derlin family proteins that function in endoplasmic reticulum-associated degradation (ERAD), suppresses the C. elegans germline over-proliferation phenotype associated with glp-1(gain-of-function) mutations. We further demonstrate that their reduction does not suppress other mutations that cause over-proliferation, suggesting that over-proliferation suppression due to loss of Derlin activity is specific to glp-1/Notch (gain-of-function) mutations. Reduction of CUP-2 Derlin activity reduces the expression of a read-out of GLP-1/Notch signaling, suggesting that the suppression of over-proliferation in Derlin loss-of-function mutants is due to a reduction in the activity of the mutated GLP-1/Notch(GF) receptor. Over-proliferation suppression in cup-2 mutants is only seen when the Unfolded Protein Response (UPR) is functioning properly, suggesting that the suppression, and reduction in GLP-1/Notch signaling levels, observed in Derlin mutants may be the result of activation of the UPR. Chemically inducing ER stress also suppress glp-1(gf) over-proliferation but not other mutations that cause over-proliferation. Therefore, ER stress and activation of the UPR may help correct for increased GLP-1/Notch signaling levels, and associated over-proliferation, in the C. elegans germline.  相似文献   

2.
《Translational oncology》2020,13(3):100735
ESR1 mutations in breast cancer are known as one of the mechanisms of resistance to aromatase inhibitors. These mutations often occur in the hotspot regions in the ligand binding domain (LBD), but comprehensive mutational analysis has shown that mutations are observed throughout the whole LBD. We previously developed a molecular barcode sequencing (MB-NGS) technique to detect ESR1 hotspot mutations in plasma with high sensitivity. In this study, we have developed a multiplex MB-NGS assay that covers the whole LBD of ESR1. The assay demonstrated that the background errors in the plasma DNA of 10 healthy controls were below 0.1%; thus, the limit of detection was set at 0.1%. We analyzed the plasma DNA of 54 patients with estrogen receptor–positive metastatic breast cancer. Seventeen mutations were detected in 13 patients (24%), with variant allele frequencies ranging from 0.13% to 10.67%, including six rare mutations with a variant allele frequency <1.0% and a novel nonhotspot mutation (A312V). Three patients had double mutations located in the same amplicons, and it was revealed that the double mutations were located in different alleles. ESR1 hotspot mutations were associated with a longer duration of aromatase inhibitor treatment under metastatic conditions and to liver metastasis. The multiplex MB-NGS assay is useful for the sensitive and comprehensive detection of mutations throughout the whole LBD of ESR1. Our assay can be applied to any specific target region of interest using tailor-made primers and can result in minimized sequencing volume and cost.  相似文献   

3.
Four classes of herbicides are known to inhibit plant acetolactate synthase (ALS). In Arabidopsis, ALS is encoded by a single gene, CSR1. The dominant csr1-1 allele encodes an ALS resistant to chlorsulfuron and triazolopyrimidine sulfonamide while the dominant csr1-2 allele encodes an ALS resistant to imazapyr and pyrimidyl-oxy-benzoate. The molecular distance between the point mutations in csr1-1 and csr1-2 is 1369 bp. Here we used multiherbicide resistance as a stringent selection to measure the intragenic recombination frequency between these two point mutations. We found this frequency to be 0.008 ± 0.0028. The recombinant multiherbicide-resistant allele, csr1-4, provides an ideal marker for plant genetic transformation.  相似文献   

4.
Peripheral T cell lymphoma (PTCL) is a heterogeneous malignancy with poor response to current therapeutic strategies and incompletely characterized genetics. We conducted whole exome sequencing of matched PTCL and non-malignant samples from 12 patients, spanning 8 subtypes, to identify potential oncogenic mutations in PTCL. Analysis of the mutations identified using computational algorithms, CHASM, PolyPhen2, PROVEAN, and MutationAssessor to predict the impact of these mutations on protein function and PTCL tumorigenesis, revealed 104 somatic mutations that were selected as high impact by all four algorithms. Our analysis identified recurrent somatic missense or nonsense mutations in 70 genes, 9 of which contained mutations predicted significant by all 4 algorithms: ATM, RUNX1T1, WDR17, NTRK3, TP53, TRMT12, CACNA2D1, INTS8, and KCNH8. We observed somatic mutations in ATM (ataxia telangiectasia-mutated) in 5 out of the 12 samples and mutations in the common gamma chain (γc) signaling pathway (JAK3, IL2RG, STAT5B) in 3 samples, all of which also harbored mutations in ATM. Our findings contribute insights into the genetics of PTCL and suggest a relationship between γc signaling and ATM in T cell malignancy.  相似文献   

5.

Background

Marfan syndrome is associated with ventricular arrhythmia but risk factors including FBN1 mutation characteristics require elucidation.

Methods and Results

We performed an observational cohort study of 80 consecutive adults (30 men, 50 women aged 42±15 years) with Marfan syndrome caused by FBN1 mutations. We assessed ventricular arrhythmia on baseline ambulatory electrocardiography as >10 premature ventricular complexes per hour (>10 PVC/h), as ventricular couplets (Couplet), or as non-sustained ventricular tachycardia (nsVT), and during 31±18 months of follow-up as ventricular tachycardia (VT) events (VTE) such as sudden cardiac death (SCD), and sustained ventricular tachycardia (sVT). We identified >10 PVC/h in 28 (35%), Couplet/nsVT in 32 (40%), and VTE in 6 patients (8%), including 3 with SCD (4%). PVC>10/h, Couplet/nsVT, and VTE exhibited increased N-terminal pro–brain natriuretic peptide serum levels(P<.001). All arrhythmias related to increased NT-proBNP (P<.001), where PVC>10/h and Couplet/nsVT also related to increased indexed end-systolic LV diameters (P = .024 and P = .020), to moderate mitral valve regurgitation (P = .018 and P = .003), and to prolonged QTc intervals (P = .001 and P = .006), respectively. Moreover, VTE related to mutations in exons 24–32 (P = .021). Kaplan–Meier analysis corroborated an association of VTE with increased NT-proBNP (P<.001) and with mutations in exons 24–32 (P<.001).

Conclusions

Marfan syndrome with causative FBN1 mutations is associated with an increased risk for arrhythmia, and affected persons may require life-long monitoring. Ventricular arrhythmia on electrocardiography, signs of myocardial dysfunction and mutations in exons 24–32 may be risk factors of VTE.  相似文献   

6.
Recessive Uaa Suppressors of the Yeast SACCHAROMYCES CEREVISIAE   总被引:2,自引:1,他引:1       下载免费PDF全文
Recessive lysine-independent revertants were isolated from a ψ+ haploid strain of the yeast Saccharomyces cerevisiae containing one of the leucine-inserting UAA suppressors, SUP29, and various UAA mutations including lys1-1. The majority of the revertants were found to have recessive suppressors in addition to the pre-existing SUP29 mutation. The recessive suppressors were able to suppress only a very limited number of UAA mutations, and none of the UAG mutations thus far examined. The recessive inefficient UAA suppressors were assigned to three complementation groups, sup111, sup112, and sup113. A high incidence of gene conversion was observed for an allele of sup111. An antisuppressor acting on sup111, but not detectably on SUP29, was inadvertently obtained during the course of the study. Interactions between SUP29, sup111 and the antisuppressor asu12 were studied.  相似文献   

7.
8.
A method was developed for isolating large numbers of mutations on chromosome I of the yeast Saccharomyces cerevisiae. A strain monosomic for chromosome I (i.e., haploid for chromosome I and diploid for all other chromosomes) was mutagenized with either ethyl methanesulfonate or N-methyl-N'-nitro-N -nitrosoguanidine and screened for temperature-sensitive (Ts- ) mutants capable of growth on rich, glucose-containing medium at 25° but not at 37°. Recessive mutations induced on chromosome I are expressed, whereas those on the diploid chromosomes are usually not expressed because of the presence of wild-type alleles on the homologous chromosomes. Dominant ts mutations on all chromosomes should also be expressed, but these appeared rarely. — Of the 41 ts mutations analyzed, 32 mapped on chromosome I. These 32 mutations fell into only three complementation groups, which proved to be the previously described genes CDC15, CDC24 and PYK1 (or CDC19). We recovered 16 or 17 independent mutations in CDC15, 12 independent mutations in CDC24 and three independent mutations in PYK1. A fourth gene on chromosome I, MAK16, is known to be capable of giving rise to a ts-lethal allele, but we recovered no mutations in this gene. The remaining nine mutations isolated using the monosomic strain appeared not to map on chromosome I and were apparently expressed in the original mutants because they had become homozygous or hemizygous by mitotic recombination or chromosome loss. — The available information about the size of chromosome I suggests that it should contain approximately 60–100 genes. However, our isolation in the monosomic strain of multiple, independent alleles of just three genes suggests that only a small proportion of the genes on chromosome I is easily mutable to give a Ts--lethal phenotype. — During these studies, we located CDC24 on chromosome I and determined that it is centromere distal to PYK1 on the left arm of the chromosome.  相似文献   

9.
10.
Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.  相似文献   

11.

Background

Urothelial carcinoma (UC) is characterized by frequent gene mutations of which activating mutations in FGFR3 are the most frequent. Several downstream targets of FGFR3 are also mutated in UC, e.g., PIK3CA, AKT1, and RAS. Most mutation studies of UCs have been focused on single or a few genes at the time or been performed on small sample series. This has limited the possibility to investigate co-occurrence of mutations.

Methodology/Principal Findings

We performed mutation analyses of 16 genes, FGFR3, PIK3CA, PIK3R1 PTEN, AKT1, KRAS, HRAS, NRAS, BRAF, ARAF, RAF1, TSC1, TSC2, APC, CTNNB1, and TP53, in 145 cases of UC. We show that FGFR3 and PIK3CA mutations are positively associated. In addition, we identified PIK3R1 as a target for mutations. We demonstrate a negative association at borderline significance between FGFR3 and RAS mutations, and show that these mutations are not strictly mutually exclusive. We show that mutations in BRAF, ARAF, RAF1 rarely occurs in UC. Our data emphasize the possible importance of APC signaling as 6% of the investigated tumors either showed inactivating APC or activating CTNNB1 mutations. TSC1, as well as TSC2, that constitute the mTOR regulatory tuberous sclerosis complex were found to be mutated at a combined frequency of 15%.

Conclusions/Significance

Our data demonstrate a significant association between FGFR3 and PIK3CA mutations in UC. Moreover, the identification of mutations in PIK3R1 further emphasizes the importance of the PI3-kinase pathway in UC. The presence of TSC2 mutations, in addition to TSC1 mutations, underlines the involvement of mTOR signaling in UC.  相似文献   

12.
Photoperiodic flowering in Arabidopsis is controlled not only by floral activators such as GI, CO and FT, but also by repressors such as SVP and FLC. Double mutations in LHY and CCA1 (lhy;cca1) accelerated flowering under short days, mainly by the GI-CO dependent pathway. In contrast, lhy;cca1 showed delayed flowering under continuous light (LL), probably due to the GI-CO independent pathway. This late-flowering phenotype was suppressed by svp, flc and elf3. However, how SVP, FLC and ELF3 mediate LHY/CCA1 and flowering time is not fully understood. We found that lhy;cca1 exhibited short hypocotyls and petioles under LL, but the molecular mechanism for these effects has not been elucidated.To address these questions, we performed a screen for mutations that suppress either or both of the lhy;cca1 phenotypes under LL, using two different approaches. We identified two novel mutations, a dominant (del1) and a recessive (phyB-2511) allele of phyB. The flowering times of single mutants of three phyB alleles, hy3-1, del1 and phyB-2511, are almost the same and earlier than those of wild-type plants. A similar level of acceleration of flowering time was observed in all three phyB mutants tested when combined with the late-flowering mutations co-2 and SVPox. However, the effect of phyB-2511 on lhy;cca1 was different from those by hy3-1 or del1. svp-3 did not strongly enhance the early-flowering phenotypes of phyB-2511 or del1. These results suggest that light signaling via PhyB may affect factors downstream of the clock proteins, controlling flowering time and organ elongation. phyB mutations with different levels of effects on lhy;cca1-dependent late flowering would be useful to determine a specific role for PHYB in the flowering pathway controlled by lhy;cca1 under LL.Key words: Arabidopsis thaliana, CCA1, circadian clock, CO, FT, LHY, organ elongation, photoperiodic flowering, PHYB, SVP  相似文献   

13.
Maintenance of genome stability in eukaryotes involves a number of conserved proteins, including RecQ helicases, which play multiple roles at various steps in homologous recombination and DNA repair pathways. Sgs1 has been described as the only RecQ helicase in lower eukaryotes. However, recent studies revealed the presence of a second RecQ helicase, Hrq1, which is most homologous to human RECQL4. Here we show that hrq1Δ mutation resulted in increased mitotic recombination and spontaneous mutation in Saccharomyces cerevisiae, and sgs1Δ mutation had additive effects on the phenotypes of hrq1Δ. We also observed that the hrq1Δ mutant was sensitive to 4-nitroquinoline 1-oxide and cisplatin, which was not complemented by overexpression of Sgs1. In addition, the hrq1Δ sgs1Δ double mutant displayed synthetic growth defect as well as a shortened chronological life span compared with the respective single mutants. Analysis of the type of age-dependent Canr mutations revealed that only point mutations were found in hrq1Δ, whereas significant numbers of gross deletion mutations were found in sgs1Δ. Our results suggest that Hrq1 is involved in recombination and DNA repair pathways in S. cerevisiae independent of Sgs1.  相似文献   

14.
15.

Background

Somatic mutations in the gene for the epidermal growth factor receptor (EGFR) are found in adenocarcinomas of the lung and are associated with sensitivity to the kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). Lung adenocarcinomas also harbor activating mutations in the downstream GTPase, KRAS, and mutations in EGFR and KRAS appear to be mutually exclusive.

Methods and Findings

We sought to determine whether mutations in KRAS could be used to further enhance prediction of response to gefitinib or erlotinib. We screened 60 lung adenocarcinomas defined as sensitive or refractory to gefitinib or erlotinib for mutations in EGFR and KRAS. We show that mutations in KRAS are associated with a lack of sensitivity to either drug.

Conclusion

Our results suggest that treatment decisions regarding use of these kinase inhibitors might be improved by determining the mutational status of both EGFR and KRAS.  相似文献   

16.
A Kwong  EK Ng  CL Wong  FB Law  T Au  HN Wong  AW Kurian  DW West  JM Ford  ES Ma 《PloS one》2012,7(9):e43994

Background

Ethnic variations in breast cancer epidemiology and genetics have necessitated investigation of the spectra of BRCA1 and BRCA2 mutations in different populations. Knowledge of BRCA mutations in Chinese populations is still largely unknown. We conducted a multi-center study to characterize the spectra of BRCA mutations in Chinese breast and ovarian cancer patients from Southern China.

Methodology/Principal Findings

A total of 651 clinically high-risk breast and/or ovarian cancer patients were recruited from the Hong Kong Hereditary Breast Cancer Family Registry from 2007 to 2011. Comprehensive BRCA1 and BRCA2 mutation screening was performed using bi-directional sequencing of all coding exons of BRCA1 and BRCA2. Sequencing results were confirmed by in-house developed full high resolution DNA melting (HRM) analysis. Among the 451 probands analyzed, 69 (15.3%) deleterious BRCA mutations were identified, comprising 29 in BRCA1 and 40 in BRCA2. The four recurrent BRCA1 mutations (c.470_471delCT, c.3342_3345delAGAA, c.5406+1_5406+3delGTA and c.981_982delAT) accounted for 34.5% (10/29) of all BRCA1 mutations in this cohort. The four recurrent BRCA2 mutations (c.2808_2811delACAA, c.3109C>T, c.7436_7805del370 and c.9097_9098insA) accounted for 40% (16/40) of all BRCA2 mutations. Haplotype analysis was performed to confirm 1 BRCA1 and 3 BRCA2 mutations are putative founder mutations. Rapid HRM mutation screening for a panel of the founder mutations were developed and validated.

Conclusion

In this study, our findings suggest that BRCA mutations account for a substantial proportion of hereditary breast/ovarian cancer in Southern Chinese population. Knowing the spectrum and frequency of the founder mutations in this population will assist in the development of a cost-effective rapid screening assay, which in turn facilitates genetic counseling and testing for the purpose of cancer risk assessment.  相似文献   

17.

Background

Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II.

Methods

Whole exome sequencing followed by expanded familial validation by Sanger sequencing.

Results

We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98.

Conclusion

Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.  相似文献   

18.
Our laboratory has been concerned with the structure and function of the decapentaplegic gene complex (DPP-C) in Drosophila melanogaster . To define the boundaries of the complex, we have studied the genetics of mutations allelic to a previously discovered mutation shortvein (shv ), known to reside near decapentaplegic. We found that shortvein resides distal to Hin-d and dpp within the same polytene chromosome doublet, 22F1-2. Lesions in shv can affect not only the formation of the wing veins but also can interfere with normal development of parts of the adult and/or be lethal. Like those of dpp mutants, the shv-associated adult abnormalities affect distal epidermal structures. Some shv lesions cause a larval lethal syndrome which is associated with an unusually long larval stage (ca. five to six times its normal duration). Lesions in shv exhibit an involved pattern of complementation with dpp mutations, indicating that both shv and dpp are parts of a single gene complex. A subset of the array of mutant phenotypes displayed by shv/dpp trans-heterozygotes appear to be dpp-specific phenotypes; we interpret these as reflecting an inactivation effect of certain shv alleles on dpp functions. The other abnormalities displayed by these trans-heterozygotes appear to be shv-specific defects; we view these as indicating an inactivation effect of certain dpp mutations on shv functions. Furthermore, embryonic lethal (EL) mutations within the DPP-C exhibit allelic interactions with all shv mutations. We conclude that the shortvein region represents a newly identified integrated portion of the DPP-C.  相似文献   

19.
Five proteins (MotA, MotB, FliG, FliM and FliN) may be involved in energizing flagellar rotation inEscherichia coli. To study interactions between the Mot proteins, and between them and the three Fli proteins of the switch-motor complex, we have isolated extragenic suppressors of dominant and partially dominantmotBmissense mutations. Four of the 13motBmutations yielded partially allele-specific suppressors. Of the suppressing mutations, 57 are in themotAgene, eight are infliG, and one is infliM; no suppressor was identified infliN. The prevalence of suppressors infliGsuggests that FliG interacts rather directly with the Mot proteins. The behaviour of cells in tethering and swarm assays indicates that themotAsuppressors are more efficient than thefliGorfliMsuppressors. Some of the suppressing mutations themselves confer distinctive phenotypes inmotB+cells. We propose a model in which mutations affecting residues in or near the putative peptidoglucan-binding region of MotB misalign the stator relative to the rotor. We suggest that most of the suppressors restore motility by introducing compensatory realignments in MotA or FliG.  相似文献   

20.
Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disorder, which is caused by mutations of the survival motor neuron 1 (SMN1) gene. Additionally, the phenotype is modified by several genes nearby SMN1 in the 5q13 region. In this study, we analyzed mutations in SMN1 and quantified the modifying genes, including SMN2, NAIP, GTF2H2, and H4F5 by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), multiplex ligation-dependent probe amplification (MLPA), TA cloning, allele-specific long-range PCR, and Sanger sequencing in 157 SMA patients. Most SMA patients (94.90%) possessed a homozygous SMN1 deletion, while 10 patients demonstrated only the absence of exon 7, but the presence of exon 8. Two missense mutations (c.689 C > T and c.844 C > T) were identified in 2 patients who both carried a single copy of SMN1. We found inverse correlations between SMN2, the NAIP copy number, and the clinical severity of the disease. Furthermore, 7 severe type I patients possessed large-scale deletions, including SMN1, NAIP, and GTF2H2. We conclude that SMN1 gene conversion, SMN1 subtle mutations, SMN2 copy number, and the extent of deletion in the 5q13 region should all be considered in the genotype–phenotype analysis of SMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号