首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Oxygen Radical Absorbance Capacity (ORAC) assay was used to determine the total antioxidant capacity of tea. Green and black teas (n = 18) had a mean antioxidant capacity of 761.1 +/- 85.3 micromol Trolox Equivalents (TE) per g dry matter. However, their antioxidant capacity varied from 235 micromol to over 1526 micromol Trolox equivalents (TE)/g dry matter, and total phenolics ranged from 32 to 147 mg/g in different commercial teas. One tea phenolics extract had an antioxidant capacity of 4796 micromol TE/g dry matter and 625 mg total phenolics/g. On a dry matter basis, an antioxidant capacity of 761 micromol TE/g is considerably higher than any of the other fruits and vegetables measured in our laboratory. However, since dry tea is not consumed directly, brewing conditions may influence the final antioxidant capacity in the tea as consumed. We tested both green and black teas by placing one tea bag (1.95 g) in 150 ml (5 oz.) of boiling water. In the first brewed cup, approximately 84% of the total antioxidant activity was solubilized within the first 5 min of brewing. An additional 13% of the antioxidant activity was extracted into the second glass of 150 ml with an additional 5 min of brewing. At the dilutions obtained after the first brewing, the tea as consumed would contain approximately 8. 31 micromol TE per ml. This total antioxidant capacity compares to other drinks from fruits and vegetables that had antioxidant capacity values ranging from 1.6 to 15 micromol TE/ml. At these antioxidant levels, consumption of 150 ml of tea could make a significant contribution to the total daily antioxidant capacity intake. (-)-Epicatechin and (+)-catechin, two components from tea, had an antioxidant capacity of 2.36 and 2.49 micromol/micromol or 8. 13 and 8.58 micromol/mg, respectively. In 16 tea samples we observed a mean of 10.0 +/- 0.6 micromol TE/mg total phenolics. Tea can be an important source of what has been referred to as "non-nutrient" antioxidant phytochemicals. However, with the variation that exists in antioxidant capacity with various tea preparations, measures of antioxidant capacity intake are critical to the study of intake and health outcomes and/or biomarkers of health outcomes.  相似文献   

2.
3.
4.
Archean and Proterozoic stromatolites are sparry or fine‐grained and finely laminated; coarse‐grained stromatolites, such as many found in modern marine systems, do not appear until quite late in the fossil record. The cause of this textural change and its relevance to understanding the evolutionary history of stromatolites is unclear. Cyanobacteria are typically considered the dominant stromatolite builders through time, but studies demonstrating the trapping and binding abilities of cyanobacterial mats are limited. With this in mind, we conducted experiments to test the grain trapping and binding capabilities of filamentous cyanobacterial mats and trapping in larger filamentous algal mats in order to better understand grain size trends in stromatolites. Mats were cut into squares, inclined in saltwater tanks at angles from 0 to 75° (approximating the angle of lamina in typical stromatolites), and grains of various sizes (fine sand, coarse sand, and fine pebbles) were delivered to their surface. Trapping of grains by the cyanobacterial mats depended strongly on (i) how far filaments protruded from the sediment surface, (ii) grain size, and (iii) the mat's incline angle. The cyanobacterial mats were much more effective at trapping fine grains beyond the abiotic slide angle than larger grains. In addition, the cyanobacterial mats actively bound grains of all sizes over time. In contrast, the much larger algal mats trapped medium and coarse grains at all angles. Our experiments suggest that (i) the presence of detrital grains beyond the abiotic slide angle can be considered a biosignature in ancient stromatolites where biogenicity is in question, and, (ii) where coarse grains are present within stromatolite laminae at angles beyond the abiotic angle of slide (e.g., most modern marine stromatolites), typical cyanobacterial‐type mats are probably not solely responsible for the construction, giving insight into the evolution of stromatolite microfabrics through time.  相似文献   

5.
Protein complexes are common in nature and play important roles in biology, but studying the quaternary structure formation in vitro is challenging since it involves lengthy and expensive biochemical steps. There are frequent technical difficulties as well with the sensitivity and resolution of the assays. In this regard, a technique that can analyze protein–protein interactions in high throughput would be a useful experimental tool. Here, we introduce a combination of yeast display and disulfide trapping that we refer to as stabilization of transient and unstable complexes by engineered disulfide (STUCKED) that can be used to detect the formation of a broad spectrum of protein complexes on the yeast surface using fluorescence labeling. The technique uses an engineered intersubunit disulfide to covalently crosslink the subunits of a complex, so that the disulfide‐trapped complex can be displayed on the yeast surface for detection and analysis. Transient protein complexes are difficult to display on the yeast surface, since they may dissociate before they can be detected due to a long induction period in yeast. To this end, we show that three different quaternary structures with the subunit dissociation constant Kd ~ 0.5–20 µM, the antibody variable domain (Fv), the IL‐8 dimer, and the p53–MDM2 complex, cannot be displayed on the yeast surface as a noncovalent complex. However, when we introduce an interchain disulfide between the subunits, all three systems are efficiently displayed on the yeast surface, showing that disulfide trapping can help display protein complexes that cannot be displayed otherwise. We also demonstrate that a disulfide forms only between the subunits that interact specifically, the displayed complexes exhibit functional characteristics that are expected of wt proteins, the mutations that decrease the affinity of subunit interaction also reduce the display efficiency, and most of the disulfide stabilized complexes are formed within the secretory pathway during export to the surface. Disulfide crosslinking is therefore a convenient way to study weak protein association in the context of yeast display. Biotechnol. Bioeng. 2010; 106: 27–41. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Nitric oxide (·NO) and nitrogen dioxide (·NO2) are hydrophobic gases. Therefore, lipid membranes and hydrophobic regions of proteins are potential sinks for these species. In these hydrophobic environments, reactive nitrogen species will exhibit different chemistry than in aqueous environments due to higher local concentrations and the lack of hydrolysis reactions. The peroxynitrite anion (ONOO-) and peroxynitrous acid (ONOOH) can freely pass through lipid membranes, making peroxynitrite-mediated reactions in a hydrophobic environment also of extreme relevance. The reactions observed by these reactive nitrogen species in a hydrophobic milieu include oxidation, nitration and even potent chain-breaking antioxidant reactions. The physiological and toxicological relevance of these reactions is discussed.  相似文献   

7.
The antioxidant capacity of allopurinol was investigated in three biological systems by measurements of visible chemiluminescence, oxygen uptake and production of thiobarbituric acid reactive substances (TBARS). The addition of allopurinol to rat brain homogenates undergoing autoxidation and erythrocyte ghost membranes supplemented with 2,2'-azo-bis-(2-amidinopropane), in concentrations up to 2 mM, has a negligible effect on lipid peroxidation development. In erythrocyte ghost membranes exposed to gamma irradiation (9.5 Gy/min), allopurinol inhibits the radiation-induced lipid peroxidation with a Q(1/2) of 2.0 mM. It is suggested that allopurinol may have an alternative antioxidant pathway of action in biological systems, probably through a scavenging action upon hydroxyl radicals.  相似文献   

8.
《Journal of bryology》2013,35(1):12-19
Abstract

Scotland’s mountains are home to a rare and unique liverwort community, ‘the oceanic-montane liverwort-rich heath’, but its component species are absent from regions where they could potentially thrive. Many biological characteristics of these species are unknown, making it impossible to explain the reasons for their rarity; however, they have not been observed to produce sporophytes within Britain. We use ex situ cultivation of whole liverworts and fragments, and in situ cultivation of fragments, to assess the growth rate and the potential for vegetative reproduction of several species. Most of the species grew from both fragments and as whole plants, indicating that the rarity of the liverwort heath is not due to poor powers of regeneration. We propose that growth rate and the potential to regenerate from fragments are important factors structuring the liverwort heath community, at least locally. Furthermore, this study demonstrates that there is potential for ex situ conservation of rare liverwort species, in situ enhancement of existing populations, and creation of new ones.  相似文献   

9.
Antioxidant capacity of desferrioxamine in biological systems   总被引:1,自引:0,他引:1  
The antioxidant capacity of desferrioxamine (DF) was investigated in three biological systems. The addition of DF to rat brain homogenates undergoing autoxidation elicited a concentration dependent inhibition of both oxygen uptake and chemiluminescence, with a median inhibitory concentration (IC50) of 0.52 microM. In this system, Fe3+-induced light emission was completely abolished at a DF/Fe3+ molar ratio of 0.6. In rat erythrocyte suspensions supplemented with t-butyl hydroperoxide, DF lengthened the induction period and decreased the rate of oxygen consumption, with an IC50 of 300 microM. Infusion of increasing concentrations of DF to the perfused rat liver elicited a progressive decrease in the rate of oxygen consumption, with no alterations in the mitochondrial respiration. This DF-sensitive respiration has a maximal value of 200 nmol/g of liver/min, with a half-maximal rate at 120 microM DF. These results indicate that DF behaves as an efficient antioxidant either under basal conditions or in chemically-induced oxidative stress, through Fe3+ chelating and/or free-radical scavenging effects.  相似文献   

10.
The purpose of this study was to estimate muscle interstitial norepinephrine (NE) levels during exercise and to determine whether nitric oxide (NO) modulates NE release in the skeletal muscle in humans. We measured interstitial dialysate concentrations of NE with two microdialysis probes inserted into the forearm. Probes were perfused with saline and the NO synthesis inhibitor N(G)-monomethyl-L-arginine (L-NMMA), respectively. Dialysate samples were collected during two sequential 20-min intense dynamic handgrip periods, preceded by 40-min baseline periods. On a different day, forearm ischemia was performed instead of the first exercise period. Exercise increased dialysate NE from 172 +/- 42 to 270 +/- 45 pg/ml (83% increase, P < 0.02, n = 6). Probes perfused with L-NMMA had a 136 +/- 39% greater dialysate NE compared with probes perfused with saline (225 +/- 25 vs. 125 +/- 25 pg/ml, P < 0.001, n = 9). The exercise-induced increase in NE (125 +/- 52%) was attenuated if preceded by exercise (34 +/- 34%) or ischemia (40 +/- 36%; P = 0.06, n = 6), suggesting a neural preconditioning effect. This attenuation was not observed in probes perfused with L-NMMA. We propose that NO modulates NE release in skeletal muscle, that ischemic exercise increases muscle interstitial NE, and that this increase can be attenuated by a preconditioning effect mediated in part by NO.  相似文献   

11.
12.
Storage of erythrocytes in blood banks is associated with biochemical and morphological changes to RBCs (red blood cells). It has been suggested that these changes have potential negative clinical effects characterized by inflammation and microcirculatory dysfunction which add to other transfusion-related toxicities. However, the mechanisms linking RBC storage and toxicity remain unclear. In the present study we tested the hypothesis that storage of leucodepleted RBCs results in cells that inhibit NO (nitric oxide) signalling more so than younger cells. Using competition kinetic analyses and protocols that minimized contributions from haemolysis or microparticles, our data indicate that the consumption rates of NO increased ~40-fold and NO-dependent vasodilation was inhibited 2-4-fold comparing 42-day-old with 0-day-old RBCs. These results are probably due to the formation of smaller RBCs with increased surface area: volume as a consequence of membrane loss during storage. The potential for older RBCs to affect NO formation via deoxygenated RBC-mediated nitrite reduction was also tested. RBC storage did not affect deoxygenated RBC-dependent stimulation of nitrite-induced vasodilation. However, stored RBCs did increase the rates of nitrite oxidation to nitrate in vitro. Significant loss of whole-blood nitrite was also observed in stable trauma patients after transfusion with 1 RBC unit, with the decrease in nitrite occurring after transfusion with RBCs stored for >25?days, but not with younger RBCs. Collectively, these data suggest that increased rates of reactions between intact RBCs and NO and nitrite may contribute to mechanisms that lead to storage-lesion-related transfusion risk.  相似文献   

13.
Reactivities of several proanthocyanidins (monomers of condensed tannins) and gallate esters (representing hydrolyzable tannins) with hydroxyl radicals, azide radicals, and superoxide anions were investigated using pulse radiolysis combined with kinetic spectroscopy. We determined the scavenging rate constants and the decay kinetics of the aroxyl radicals both at the wavelength of the semiquinone absorption (275 nm) and the absorption band of the gallate ester ketyl radical (400-420 nm). For most compounds second-order decay kinetics were observed, which reflect disproportionation of the semiquinones. In the case of the oligomeric hydrolysable tannins, pentagalloyl glucose and tannic acid, the decay kinetics were more complex involving sequential first-order and second-order reactions, which could only be resolved by kinetic modeling. A correlation of the reaction rates with hydroxyl radicals (k*OH) with the number of adjacent aromatic hydroxyl groups (i.e., representing catechol and/or pyrogallol structures) was obtained for both condensed and hydrolyzable tannins. Similar correlation for the reactions with azide radicals and superoxide anions are less obvious, but exist as well. We consider proanthocyanidins superior radical scavenging agents as compared with the monomeric flavonols and flavones and propose that these substances rather than the flavonoids proper represent the antioxidative principle in red wine and green tea.  相似文献   

14.
BACKGROUND: Trihydroxynaphthalene reductase catalyzes two intermediate steps in the fungal melanin biosynthetic pathway. The enzyme, a typical short-chain dehydrogenase, is the biochemical target of three commercial fungicides. The fungicides bind preferentially to the NADPH form of the enzyme. RESULTS: Three X-ray structures of the Magnaporthe grisea enzyme complexed with NADPH and two commercial and one experimental fungicide were determined at 1.7 A (pyroquilon), 2.0 A (2,3-dihydro-4-nitro-1H-inden-1-one, 1), and 2.1 A (phthalide) resolutions. The chemically distinct inhibitors occupy similar space within the enzyme's active site. The three inhibitors share hydrogen bonds with the side chain hydroxyls of Ser-164 and Tyr-178 via a carbonyl oxygen (pyroquilon and 1) or via a carbonyl oxygen and a ring oxygen (phthalide). Active site residues occupy similar positions among the three structures. A buried water molecule that is hydrogen bonded to the NZ nitrogen of Lys-182 in each of the three structures likely serves to stabilize the cationic form of the residue for participation in catalysis. CONCLUSIONS: The pro S hydrogen of NADPH (which is transferred as a hydride to the enzyme's naphthol substrates) is directed toward the carbonyl carbon of the inhibitors that mimic an intermediate along the reaction coordinate. Modeling tetrahydroxynaphthalene and trihydroxynaphthalene in the active site shows steric and electrostatic repulsion between the extra hydroxyl oxygen of the former substrate and the sulfur atom of Met-283 (the C-terminal residue), which accounts, in part, for the 4-fold greater substrate specificity for trihydroxynaphthalene over tetrahydroxynaphthalene.  相似文献   

15.
Zeolite-Y powder has been functionalized with ferric iron-diethyldithiocarbamate complexes and applied to trap nitric oxide radicals in liquids and biological systems. The complexes have been assembled in situ in the pores of zeolite-Y and act as traps for nitric oxide radicals. The resulting mononitrosyl-iron complexes form a mixture of diamagnetic ferric and paramagnetic ferrous complexes. The yield of trapped NO may be determined ex situ using electron paramagnetic resonance. The material may be anchored on solid surfaces, mixed into a composite or compressed into small pellets. The material was used to detect endogenous NO in endothelial cell cultures and spinach leaves. The sensitivity of the functionalized zeolite is significantly better than that achieved in conventional trapping of NO with iron-diethyldithiocarbamate complexes.  相似文献   

16.
Nitric oxide (NO) has a critical role in several physiological and pathophysiological processes. In this paper, the reactions of the nitrosyl complexes of [Ru(bpy)2L(NO)]n+ type, where L = SO32− and imidazole and bpy = 2,2′-bipiridine, with cysteine and glutathione were studied. The reactions with cysteine and glutathione occurred through the formation of two sequential intermediates, previously described elsewhere, [Ru(bpy)2L(NOSR)]n+ and [Ru(bpy)2L(NOSR)2] (SR = thiol) leading to the final products [Ru(bpy)2L(H2O)]n+ and free NO. The second order rate constant for the second step of this reaction was calculated for cysteine k2(SR) = (2.20 ± 0.12) × 109 M− 1 s− 1 and k2(RSH) = (154 ± 2) M− 1 s− 1 for L = SO32− and k2(SR) = (1.30 ± 0.23) × 109 M− 1 s− 1 and k2(RSH) = (0.84 ± 0.02) M− 1 s− 1 for L = imidazole; while for glutathione they were k2(SR) = (6.70 ± 0.32) × 108 M− 1 s− 1 and k2(RSH) = 11.8 ± 0.3 M− 1 s− 1 for L = SO32− and k2(SR) = (2.50 ± 0.36) × 108 M− 1 s− 1 and k2(RSH) = 0.32 ± 0.01 M− 1 s− 1 for L = imidazole. In all reactions it was possible to detect the release of NO from the complexes, which it is remarkably distinct from other ruthenium metallocompounds described elsewhere with just N2O production. These results shine light on the possible key role of NO release mediated by physiological thiols in reaction with these metallonitrosyl ruthenium complexes.  相似文献   

17.
Knetic implications of enzyme-effector complexes   总被引:2,自引:0,他引:2  
  相似文献   

18.
Plant compensatory growth is proposed to be insidious to biological control and known to vary under different environmental conditions. However, the effects of microsite conditions on compensation capacity and its indirect impacts on biological control of plant invaders have received little attention. Alligator weed, Alternanthera phioxeroides, is an invasive plant worldwide, growing in both aquatic and terrestrial habitats that are often affected by flooding. Biological control insects have been successful in suppressing the plant in many aquatic habitats but have failed in terrestrial habitats. To evaluate the impact of flooding on compensation capacity, we conducted common garden and greenhouse experiments in which plants were grown under different moisture conditions (aquatic versus terrestrial). Our results show that plants were able to fully recover from continued herbivory in the terrestrial habitat, but failed in the aquatic habitat, indicating a flooding-regulated plant compensatory capacity. Also, the grazed plants increased below-ground growth and reproductive root bud formation in the terrestrial habitat, but there was no such difference in the aquatic habitat. Our findings suggest that the differing plant compensatory capacity, affected by flooding, may explain the different biological control efficacy of alligator weed in aquatic and terrestrial habitats. Understanding mechanisms in plant invader compensation in different microsite conditions is important for improving management efficiency.  相似文献   

19.
Broillet M  Randin O  Chatton J 《FEBS letters》2001,491(3):227-232
The fluorescent indicator of nitric oxide (NO), 4,5-diaminofluorescein (DAF-2), and its membrane-permeable derivative (DAF-2 diacetate) have been recently developed to perform real-time biological imaging of NO. In this study, we show that DAF-2 is strongly influenced by factors other than the concentration of NO itself. Using measurements with a fluorimeter as well as fluorescence microscopy, we found that the divalent cation concentration in the medium, as well as the incident light, strongly affects the ability of DAF-2 to detect NO. Calcium, in particular, enhanced the signal detection of NO released by NO donors by up to 200 times. With multiple and longer exposures to light, no bleaching of the dye was observed but, instead, a potentiation of the fluorescence response could be measured. While these two properties will affect the use and interpretation of the hitherto acquired data with this fluorescent compound, they may also open up new possibilities for its application.  相似文献   

20.
The role of Hemoglobin (Hb) on nitric oxide (NO) biology has received much attention. Until recently, the reaction between erythrocytic Hb and NO was generally considered in the context of mechanisms that safely detoxify NO. However, recent insights suggest that properties associated with the red blood cell limit NO-Hb interactions under physiological conditions, and provide some resolution to the question of how NO functions in the presence of blood. Furthermore, Hb-dependent mechanisms that preserve, not destroy NO bioactivity in vivo have also been proposed. The emerging picture suggests that the interplay between NO and erythrocytic Hb is important in regulating the functions of both these molecules in vivo. However, Hb-dependent scavenging and loss of NO function is significant when this heme protein is present outside the red blood cell. This can occur during hemolysis or administration of Hb-based blood substitutes. Scavenging of NO is a significant problem that limits the use of Hb-based blood substitutes in the clinic, and development of Hb molecules that do not efficiently react with NO remains an important area of investigation. In this article, the reactions between NO and erythrocytic Hb or cell-free Hb are described and the effects on NO and Hb function in vivo and development of blood substitutes discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号