首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
NS0 cells are an important industrial cell line for the production of therapeutic monoclonal antibodies. Culturing these cells is challenging because they are cholesterol auxotrophs, and providing cholesterol to the cells is hampered by the low solubility of lipids in aqueous medium. Limited loading capacity, precipitation, instability, and toxicity are associated with traditional delivery methods that involve solvents or carrier molecules. In this work, nanoparticle cholesterol mixtures (NCM) were produced by electrohydrodynamic spraying and added directly to a cholesterol auxotroph NS0 cell line. Compared to a cholesterol-cyclodextrin solution and a commercial proprietary cholesterol solution, SyntheChol NS0 supplement, NCM is significantly less cytotoxic. In the fed batch cell culture process, product titer was increased by 32% when the NCM supplement replaced SyntheChol NS0 supplement. An even greater product titer improvement, 64%, was achieved when both NCM and SyntheChol NS0 supplements were used in the fed-batch process.  相似文献   

3.
Keen MJ  Steward TW 《Cytotechnology》1995,17(3):203-211
NS0 has been used as a fusion partner for the production of hybridomas and has more recently been engineered to produce recombinant protein. A protein-free culture medium, designated W38 medium, has previously been developed which supported high density growth of rat myeloma and hybridoma cell lines. NS0 cells failed to grow in W38 medium and in a number of protein-free culture media which support the growth of other myeloma cell lines. NS0 cells are derived from the NS-1 cell line, which is known to require exogencus cholesterol. It was found that NS0 cells grew in W38 medium supplemented with phosphatidylcholine, cholesterol, and albumin and that NS0 were auxotrophic for cholesterol. Protein-free growth of NS0 cells was achieved by using -cyclodextrin to replace albumin as a lipid carrier. The maximal cell density reached in this protein-free medium was in excess of 1.5×106 cell ml–1. The lipid supplements in the medium precipitated after a few days storage at +4°C. In order to overcome this problem a protocol was developed which allowed NS0 cells to be adapted to cholesterol-independent growth in W38 medium. NS0.CF (cholesterol-independent NS0 cells) were cultured continuously in W38 medium for several months. In shake flask culture a cell density of 2.4×106 cells ml–1 was achieved in W38 medium compared with 1.41×106 cells ml–1 in RPMI 1640 medium containing 10% foetal bovine serum. NS0.CF cells readily grew in a 1 litre stirred bioreactor using W38 medium supplemented with Pluronic F68 reaching a density of 3.24×106 cells ml–1. NS0.CF were cloned protein-free by limiting dilution in W38 medium, giving colonies in wells that were seeded at an average density of 0.32 cells per 200 l. This study has demonstrated for the first time the growth of a cholesterol-requiring mouse myeloma cell line in a completely defined protein-free medium and its subsequent adaptation to cholesterol-independence.Abbreviations BSA bovine serum albumin - C cholesterol - CD cyclodextrin - F68 Pluronic F68 - GS glutamine synthetase - P phosphatidylcholine - PC-FBS phosphatidylcholine, cholesterol and foetal bovine serum - RPMI RPMI 1640 medium - MSX methionine sulphoximine  相似文献   

4.
Summary We have used the cholesterol auxotrophy of NS-1 mouse myeloma cells as the basis for selecting NS-1 hybridomas. The outgrowth of nascent NS-1 hybridomas in cholesterol-free serum-free medium was 3- to 9-fold more efficient than that in HAT medium and resulted in 3- to 13-times as many antigen-reactive hybridoma wells. This method of hybridoma selection can be applied with any sterol-dependent parent cell line. Hybridomas established under serum-free culture conditions were growth inhibited by fetal calf serum. This work was supported by the Japanese Ministry of Education, Science and Culture and in part by grants from the National Institutes of Health. Editor's Statement This article reports a creative technical application of the author's previous work on lipid metabolism in lymphoid cells allowing an efficient, alternative selection procedure for isolation of hybridomas.  相似文献   

5.
6.
7.
We have constructed NS0 myeloma cell lines that inducibly express the p21CIP1 cyclin dependent kinase inhibitor, using the Lacswitch system. Ectopic p21(CIP1) protein expression was rapidly induced within 12 h of addition of IPTG, causing G1-phase arrest and almost complete inhibition of cell proliferation. The production of a chimeric IgG4 antibody, expressed constitutively from an independent promoter, was found to be significantly increased by more than 4-fold in p21CIP1-arrested cells. This study demonstrates for the first time the successful construction of anchorage-independent and proliferation-controlled NS0 cell lines with enhanced secreted chimeric antibody production independent of the inducible promoter activity used to achieve cytostasis.  相似文献   

8.
9.
10.
Keen MJ  Hale C 《Cytotechnology》1995,18(3):207-217
A protein-free growth medium (W38 medium) had previously been developed for the NS0 mouse myeloma cell line which is cholesterol-auxotrophic. This paper describes the development of a protein-free growth medium for NS0 cells expressing humanised monoclonal antibody using GS (glutamine synthetase) as a selectable marker. Several GS-engineered NS0 cell lines expressing humanised monoclonal antibody grew in a modification of W38 medium which maintained GS-selection, supplemented with cholesterol, phosphatidylcholine and -cyclodextrin. Further studies showed that additional glutamic acid, asparagine, ribonucleosides and choline chloride improved cell growth. Amino acid analysis identified a number of amino acids that were being depleted from the culture medium. NS0 cell lines 9D4 and 2H5 expressing CAMPATH-1H* were adapted to enable them to grow serum-free in the absence of cholesterol and -cyclodextrin. Cholesterol-independent 9D4 (9D4.CF) cells grown in shake flask culture using an enriched protein-free medium (WNSD medium), supplemented with human recombinant insulin (Nucellin), reached a maximum cell density to 1.86×106 cells ml–1 producing 76.6 mg l–1 of antibody. CAMPATH-1H antibody produced using serum-free medium was found to be functionally activein vitro in the Antibody Dependant Cellular Cytotoxicity (ADCC) assay.Abbreviations C cholesterol - CD cyclodextrin - dhfr dihydrofolate reductase - F68 Pluronic F68 - GS glutamine synthetase - MSX methionine sulphoximine - P phosphatidylcholine - PC-FBS phosphatidylcholine, cholesterol and foetal bovine serum - RPMI RPMI 1640 medium - ADCC Antibody-dependant cellular cytotoxicity  相似文献   

11.
12.
The perceived sensitivity of animal cells to hydrodynamic shear has limited agitation and aeration at large-scale. This makes it difficult to ensure adequate mixing of the vessel contents and may lead to inhomogeneities in operational parameters such as temperature, dissolved oxygen concentration, and especially pH. The effect of pH shifts and pH perturbations on the cellular responses, in batch culture, of a GS-NS0 mouse myeloma cell line, expressing a recombinant antibody, was investigated. In addition, the effect of extreme pH on the structure of the purified antibody product was studied using isoelectric focusing. The fermentation pH value was shifted abruptly from pH 7.3 to pH values ranging from 6.5 to 9.0. Culture pH was maintained at this new value for the remainder of the fermentation. All pH shifts of above 0.2 units caused a transient increase in apoptosis. However, cultures shifted to pH values between 7.0 and 8.0 continued to grow and the apoptotic fraction returned to initial levels. Cultures shifted to pH values above pH 8.0 and below pH 7.0 did not recover resulting in culture death. For example, a shift to pH 8.5 caused accumulation of cells in the G(2)/M phase of the cell cycle followed by apoptotic death. After the pH shift, maximum specific growth rate was observed over the range pH 7.3 to 7.5 and maximum viable cell number was seen at pH 7.3. Maximum volumetric antibody production, resulting from increased culture longevity, was seen at pH 7.0. It was also observed that glucose consumption increased with increasing pH. In a separate set of experiments cells were subjected to a single pH perturbation ranging in duration from 0 to 600 minutes. Exposure of cells to a pH value greater than 8.5 for more than 10 minutes caused a decrease in the proportion of viable cells and induced a lag in cell growth. At very low pH (6.5) similar effects were seen, but only for extended perturbations (600 min). However, after recovery from the pH perturbation, growth, product secretion and metabolism all returned to original levels. Incubation of the antibody, at the range of pH values investigated, indicated no alterations in the structure of the antibody as determined by the isoelectric focusing pattern.  相似文献   

13.
Apoptosis can limit the maximum production of recombinant protein expression from cultured mammalian cells. This article focuses on the links between nutrient deprivation, ER perturbation, the regulation of (growth arrest and DNA damage inducible gene 153) GADD153 expression and apoptosis. During batch culture, decreases in glucose and glutamine correlated with an increase in apoptotic cells. This event was paralleled by a simultaneous increase in GADD153 expression. The expression of GADD153 in batch culture was suppressed by the addition of nutrients and with fed-batch culture the onset of apoptosis was delayed but not completely prevented. In defined stress conditions, glucose deprivation had the greatest effect on cell death when compared to glutamine deprivation or the addition of tunicamycin (an inhibitor of glycosylation), added to generate endoplasmic reticulum stress. However, the contribution of apoptosis to overall cell death (as judged by morphology) was smaller in conditions of glucose deprivation than in glutamine deprivation or tunicamycin treatment. Transient activation of GADD153 expression was found to occur in response to all stresses and occurred prior to detection of the onset of cell death. These results imply that GADD153 expression is either a trigger for apoptosis or offers a valid indicator of the likelihood of cell death arising from stresses of relevance to the bioreactor environment.  相似文献   

14.
Recent developments in high cell density and high productivity fed-batch animal cell cultures have placed a high demand on oxygenation and carbon dioxide removal in bioreactors. The high oxygen demand is often met by increasing agitation and sparging rates of air/O2 in the bioreactors. However, as we demonstrate in this study, an increase of gas sparging can result in cell damage at the sparger site due to high gas entrance velocities. Previous studies have showed that gas bubble breakup at the culture surface was primarily responsible for cell damage in sparged bioreactors. Such cell damage can be reduced by use of surfactants such as Pluronic F-68 in the culture. In our results, where NS0 cells were grown in a protein-free and cholesterol-free medium containing 0.5 g/L Pluronic F-68, high gas entrance velocity at the sparger site was observed as the second mechanism for cell damage. Experiments were performed in scaled-down spinners to model the effect of hydrodynamic force resulting from high gas velocities on antibody-producing NS0 cells. Cell growth and cell death were described by first-order kinetics. Cell death rate constant increased significantly from 0.04 to 0.18 day(-1) with increasing gas entrance velocity from 2.3 to 82.9 m/s at the sparger site. The critical gas entrance velocity for the NS0 cell line studied was found to be approximately 30 m/s; velocities greater than 30 m/s caused cell damage which resulted in reduced viability and consequently reduced antibody production. Observations from a second cholesterol-independent NS0 cell line confirmed the occurrence of cell damage due to high gas velocities. Increasing the concentration of Pluronic F-68 from 0.5 to 2 g/L had no additional protective effect on cell damage associated with high gas velocity at the sparger. The results of gas velocity analysis for cell damage have been applied in two case studies of large-scale antibody manufacturing. The first is a troubleshooting study for antibody production carried out in a 600 L bioreactor, and the second is the development of a gas sparger design for a large bioreactor scale (e.g., 10,000 L) for antibody manufacturing.  相似文献   

15.
Mouse myeloma NS0 cells widely used in hybridoma technology lack the expression of a major stress protein Hsp70 which is the principal component of the basic cellular defense mechanism. These cells rapidly undergo apoptosis at the late-stationary phase of batch culture following nutrient exhaustion. Since Hsp70 was recently demonstrated to protect cells against numerous apoptotic stimuli, the aim of the present study was to examine the protective potential of the protein expression in engineered myeloma NS0 cells and in resulting hybridomas. Myeloma cells were transfected with the hsp70 gene under beta-actin gene promoter. To imitate harmful conditions that hybridoma or myeloma cells often experience when cultivated in large scale for an antibody production, NS0(wt) and NS0(hsp70) cell cultures were maintained without changing the medium for a few days, and the expression of apoptotic markers has been studied. It was found that long-term cultivation induced apoptosis in original cells manifested by typical nuclei fragmentation, DNA ladders and activation of caspase-3. In contrast, in transfected cells under the same conditions the outcome of apoptosis was postponed for 24 hours. Most relevant was that the fusion of transfected myeloma cells with immune splenocytes resulted in twofold hybridomas output compared with wild-type fusion partner. Almost half of the hybridomas continued to be hsp70-positive and maintained higher robustness in culture. The level of monoclonal antibodies production by hybridoma cells obtained with the use of NS0(wt) and NS0(hsp70) was similar, however, the secreted product was better preserved in culture supernatants of Hsp70-positive cells. It is concluded that transfection of mouse myeloma cells with the hsp70 gene can be a novel means to increase hybridoma yield and reduce the sensitivity of myeloma and hybridoma cells to culture conditions insults accompanying monoclonal antibody production.  相似文献   

16.
Animal cells are cultured in several types of vessels at laboratory and industrial scale the most common being the stirred tank and the air-lift. Economically, it is preferable to culture animal cells at the largest possible scale but the perceived sensitivity of animal cells to hydrodynamic shear has, until now, limited the aeration and agitation rates used. This has been reported to cause inhomogeneities in operational parameters such as dissolved oxygen concentration, temperature and pH. pH is of special interest during the latter stages of many animal cell fermentation because alkali additions, used for pH control, can cause large local pH perturbations of varying size and duration. The effect of single and multiple pH perturbations on the cell growth of a widely used GS-NS0 mouse myeloma cell line grown in batch culture was investigated. The effect of perturbation amplitude and duration was investigated using a single stirred tank reactor (STR). In the single STR system cells were subjected to one pH 8.0 or 9.0 perturbation ranging in duration from 0-90 minutes. No measurable decrease in viable cell number was seen for pH 8.0 perturbations of any duration whereas pH 9.0 perturbations lasting for 10 minutes caused a 15% decrease in viable cell number. The proportion of viable cells decreased with increasing perturbation time and a 90-minute exposure killed all of the cells. The effect of multiple pH perturbations on GS-NS0 cells was investigated using two connected STR's. More specifically the number of perturbations and the perturbation frequency were investigated. Cells were subjected to between 0 and 100 perturbations at pH 8.0; the time between each perturbation (frequency) was 6 minutes and each perturbation lasted for 200 seconds. Viable cell number decreased with increasing perturbation number, with 100 perturbations causing death of 27.5% of cells. Cells were also exposed to 10 perturbations at pH 9.0, each of 200 second duration at frequencies of either 6, 18 or 60 minutes. Approximately 8 times more cells were killed with perturbations at a 6-minute frequency (28.3% cell death) than at a 60-minute frequency (3.4% cell death).  相似文献   

17.
A spin filter perfusion systems was used to achieve a high cell density culture for two NS0 cell lines in 2 litres bioreactors. One cell line is transfected with the bcl-2 gene (NS0 Bcl-2) encodes the 'anti-apoptotic' human Bcl-2 protein and the other cell line (NS0 Control) with a blank vector. The runs started as batch cultures for two days and were perfused with fresh medium at 0.5 volumes per day (day(-1)) for 4 days, increasing gradually to 2 day(-1) at day 7. The increase of the viable cell density of Bcl-2 cell line was far greater than the control cell line, although they were perfused with the same amount of medium. At the end of the period of each perfusion rate, the viable cell densities of Bcl-2 culture were 30%, 120%, 160% and 220% higher than its control cell line corresponding values. Overall, there was a roughly 9 fold increase in viable cell density from the inoculum for the control culture, but almost a 30 fold increase for the Bcl-2 culture. The mode of cell death in the control culture was initially predominantly by necrosis (viability higher than 80%), but apoptotic cell death became more significant after day 8 of the culture. Cell death in the Bcl-2 culture was almost entirely by necrosis, although it remained at a very low level (less than 5%) to the termination time. The cell cycle distributions for both cell lines were very much similar indicating they have a similar doubling time and G1 to S progression rate. Interestingly, the Bcl-2 cultures exhibited reduced antibody specific production rate with increasing viable cell number and time. The volumetric production rate was, however, similar in both cultures. Bcl-2 as an anti-death protein allowed cells to survive and thus divide to higher cell densities without the need for additional nutrients. Most of the cellular energy in a producer cell line is used for biomass production rather than for antibody production, as was the case with the control cell line.  相似文献   

18.
Presented is an antibody production platform based on the fed-batch culture of recombinant NS0-derived cell lines. NS0 host cells, obtained from the European Collection of Cell Cultures (ECACC, Salisbury, UK, Part No. 85110503), were first adapted to grow in a protein-free, cholesterol-free medium. The resulting host cell line was designated NS0-PFCF (protein-free, cholesterol-free). The five production cell lines presented here were generated using a common protocol consisting of transfection by electroporation and subcloning. The NS0-PFCF host cell line was transfected using a single expression vector containing the Escherichia coli xanthine-guanine phosphoribosyl transferase gene (gpt), and the antibody heavy and light chain genes driven by the CMV promoter. The five cell lines were chosen after one to three rounds of iterative subcloning, which resulted in a 19-64% increase in antibody productivity when four mother-daughter cell pairs were cultured in a fed-batch bioreactor process. The production cell lines were genetically characterized to determine antibody gene integrity, nucleotide sequences, copy number, and the number of insertion sites in the NS0 cell genome. Genetic characterization data indicate that each of the five production cell lines has a single stably integrated copy of the antibody expression vector, and that the antibody genes are correctly expressed. Stability of antibody production was evaluated for three of the five cell lines by comparing the early stage seed bank with the Working Cell Bank (WCB). Antibody productivity was shown to be stable in two of three cell lines evaluated, while one of the cell lines exhibited a 20% drop in productivity after passaging for approximately 4 weeks. These five NS0-derived production cell lines were successfully cultured to produce antibodies with acceptable product quality attributes in a standardized fed-batch bioreactor process, consistently achieving an average specific productivity of 20-60 pg/cell-day, and a volumetric productivity exceeding 120 mg/L-day (Burky et al., 2006). In contrast to the commonly available NS0 host cell line, which requires serum and cholesterol for growth, and the commonly used expression vector system, which uses a proprietary glutamine synthetase selection marker (GS-NS0), these NS0 cells are cholesterol-independent, grow well in a protein-free medium, use a non-proprietary selection marker, and do not require gene amplification for productivity improvement. These characteristics are advantageous for use of this NS0 cell line platform for manufacturing therapeutic antibodies.  相似文献   

19.
NS0 cells require exogenous cholesterol for growth. The non-glutamine synthetase (GS) cholesterol-dependent NS0 host was treated with 5-azacytidine (5azaC), a demethylation drug, and adapted to grow in cholesterol-free, chemically defined medium. Within 7 weeks, a stable, cholesterol-independent NS0 host (NS0.CF) was obtained. The new NS0.CF host, as well as the original cholesterol auxotroph host, was transfected with the same mAb expression plasmid, and the top producing clone from both hosts were compared side-by-side in the enhanced platform fed-batch cultures using chemically defined media. The NS0.CF derived clone significantly out-performed the cholesterol-dependent clone, with titer reaching 4.5 g/L versus 3.0 g/L, respectively, mainly due to higher specific productivity, while key product quality attributes remained comparable. This work demonstrated an effective and rapid approach to generate a cholesterol-independent NS0 host, and its application in recombinant protein production.  相似文献   

20.
The production of recombinant proteins from mammalian cells is now an essential part of biotechnology. However, despite this importance, the detailed characteristics of good producing cell lines remain largely unknown. The industrially important GS-NS0 mammalian expression system is able to produce large amounts of protein from relatively few copies of recombinant genes. This makes GS-NS0 cell lines ideal candidates to study the consequence of recombinant plasmid transfection in mammalian cells. This study investigated the molecular features of a panel of 17 randomly chosen GS-NS0 cell lines engineered to produce a recombinant antibody. The research analysed antibody production via enzyme-linked immunosorbent assay (ELISA), and investigated the molecular features of the transfectants by Northern, Southern and copy number analysis. The cell lines generated produced a range of antibody concentrations. In addition, for transfectants defined as producers of recombinant antibody there was a positive correlation between specific productivity and heavy chain mRNA expression. The use of Northern and Southern analysis allowed determination of the functional integrity of the transfected plasmid. Over 50% of the transfectants studied had molecular defects at the level of mRNA and/or cDNA. Cell lines were identified with suspected defects in the regulatory regions of transfected genes in addition to cell lines which lacked recombinant genes. Also, "false-positive" cell lines were generated which were able to overcome the GS selection pressure without producing any recombinant antibody. This article discusses these findings in relation to vector design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号