首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural properties of myristoylated forms of recombinant recoverin of the wild type and of its mutants with damaged second and/or third Ca(2+)-binding sites were studied by fluorimetry and circular dichroism. The interaction of wild-type recoverin with calcium ions was shown to induce unusual structural rearrangements in its molecule. In particular, protein binding with Ca2+ ions results in an increase in the mobility of the environment of Trp residues, in higher hydrophobicity, and in elevated thermal stability (its thermal transition shifts by 15 degrees C to higher temperatures) but has almost no effect on its secondary structure. Similar structural changes induced by Ca2+ are also characteristic of the -EF2 mutant of recoverin whose second Ca(2+)-binding site is modified and cannot bind calcium ions. The structural properties of the -EF3 and -EF2,3 mutants (whose third or simultaneously second and third Ca(2+)-binding sites, respectively, are modified and damaged) are practically indifferent to calcium ions.  相似文献   

2.
Unlike wild type recoverin with only two (the second and the third) functioning Ca+2-binding sites out of four potential ones, the +EF4 mutant contains a third active Ca+2-binding site. This site was reconstructed from the fourth potential Ca+2-binding domain by the introduction of several amino acid substitutions in it by site-directed mutagenesis. The effect of these mutations in the fourth potential Ca+2-binding site of myristoylated recoverin on the structural features and conformational stability of the protein was studied by fluorimetry and circular dichroism. The apoform of the resulting mutant (free of Ca2+ ions) was shown to have a higher calcium capacity, significantly lower thermal stability, and noticeably different secondary and tertiary structures as compared with the apoform of wild-type recoverin. For communication II, see [1].  相似文献   

3.
Unlike wild type recoverin with only two (the second and the third) functioning Ca(2+)-binding sites out of four potential ones, the +EF4 mutant contains a third active Ca(2+)-binding site. This site was reconstructed from the fourth potential Ca(2+)-binding domain by the introduction of several amino acid substitutions in it by site-directed mutagenesis. The effect of these mutations in the fourth potential Ca(2+)-binding site of myristoylated recoverin on the structural features and conformational stability of the protein was studied by fluorimetry and circular dichroism. The apoform of the resulting mutant (free of Ca2+ ions) was shown to have a higher calcium capacity, significantly lower thermal stability, and noticeably different secondary and tertiary structures as compared with the apoform of wild type recoverin.  相似文献   

4.
Recoverin belongs to the family of intracellular Ca2+-binding proteins containing EF-hand domains, neuronal calcium sensors (NCS). In photoreceptor outer segments, recoverin is involved into the recovery of visual cycle via Ca2+-dependent interaction with disk membranes and inhibition of rhodopsin kinase. The function of a conservative within NCS family Cys residue in the inactive EF-loop 1 remains unclear, but previous study has shown its vulnerability to oxidation under mild oxidizing conditions. To elucidate the influence of oxidation of the conservative Cys39 in recoverin the properties of its C39D mutant, mimicking oxidative conversion of Cys39 into sulfenic, sulfinic or sulfonic acids have been studied using intrinsic fluorescence, circular dichroism, and equilibrium centrifugation methods. The C39D substitution results in essential changes in structural, physico-chemical and physiological properties of the protein: it reduces α-helical content, decreases thermal stability and suppresses protein affinity for photoreceptor membranes. The latter effect precludes proper functioning of the Ca2+-myristoyl switch in recoverin. The revealed significance of oxidation state of Cys39 for maintaining the protein functional status shows that it may serve as redox sensor in vision and suggests an explanation of the available data on localization and light-dependent translocation of recoverin in rod photoreceptors.  相似文献   

5.
The molecule of photoreceptor Ca(2+)-binding protein recoverin contains four potential Ca(2+)-binding sites of the EF-hand type, but only two of them (the second and the third) can actually bind calcium ions. We studied the interaction of Ca2+ with recoverin and its mutant forms containing point amino acid substitutions at the working Ca(2+)-binding sites by measuring the intrinsic protein fluorescence and found that the substitution of Gln for Glu residues chelating Ca2+ in one (the second or the third) or simultaneously in both (the second and the third) Ca(2+)-binding sites changes the affinity of the protein to Ca2+ ions in different ways. The Gln for Glu121 substitution in the third site and the simultaneous Gln substitutions in the second (for Glu85) and in the third (for Glu121) sites result in the complete loss of the capability of recoverin for a strong binding of Ca(2+)-ions. On the other hand, the Gln for Glu85 substitution only in the second site moderately affects its affinity to the cation. Hence, we assumed that recoverin successively binds Ca(2+)-ions: the second site is filled with the cation only after the third site has been filled. The binding constants for the third and the second Ca(2+)-binding sites of recoverin determined by spectrofluorimetric titration are 3.7 x 10(6) and 3.1 x 10(5) M-1, respectively.  相似文献   

6.
Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate cyclases. Caveolin-1 is the major integral component of DRMs, possessing scaffolding and regulatory activities towards various signaling proteins. In this study, photoreceptor Ca2+-binding proteins recoverin, NCS1, GCAP1, and GCAP2, belonging to neuronal calcium sensor (NCS) family, were recognized as novel caveolin-1 interacting partners. All four NCS proteins co-fractionate with caveolin-1 in DRMs, isolated from illuminated bovine rod outer segments. According to pull-down assay, surface plasmon resonance spectroscopy and isothermal titration calorimetry data, they are capable of high-affinity binding to either N-terminal fragment of caveolin-1 (1–101), or its short scaffolding domain (81–101) via a novel structural site. In recoverin this site is localized in C-terminal domain in proximity to the third EF-hand motif and composed of aromatic amino acids conserved among NCS proteins. Remarkably, the binding of NCS proteins to caveolin-1 occurs only in the absence of calcium, which is in agreement with higher accessibility of the caveolin-1 binding site in their Ca2+-free forms. Consistently, the presence of caveolin-1 produces no effect on regulatory activity of Ca2+-saturated recoverin or NCS1 towards rhodopsin kinase, but upregulates GCAP2, which potentiates guanylate cyclase activity being in Ca2+-free conformation. In addition, the interaction with caveolin-1 decreases cooperativity and augments affinity of Ca2 + binding to recoverin apparently by facilitating exposure of its myristoyl group. We suggest that at low calcium NCS proteins are compartmentalized in photoreceptor rafts via binding to caveolin-1, which may enhance their activity or ensure their faster responses on Ca2+-signals thereby maintaining efficient phototransduction recovery and light adaptation.  相似文献   

7.
A molecule of the photoreceptor Ca(2+)-binding protein recoverin contains four potential EF-hand Ca(2+)-binding sites, of which only two, the second and the third, are capable of binding calcium ions. We have studied the effects of substitutions in the second, third and fourth EF-hand sites of recoverin on its Ca(2+)-binding properties and some other characteristics, using intrinsic fluorescence, circular dichroism spectroscopy and differential scanning microcalorimetry. The interaction of the two operating binding sites of wild-type recoverin with calcium increases the protein's thermal stability, but makes the environment around the tryptophan residues more flexible. The amino acid substitution in the EF-hand 3 (E121Q) totally abolishes the high calcium affinity of recoverin, while the mutation in the EF-hand 2 (E85Q) causes only a moderate decrease in calcium binding. Based on this evidence, we suggest that the binding of calcium ions to recoverin is a sequential process with the EF-hand 3 being filled first. Estimation of Ca(2+)-binding constants according to the sequential binding scheme gave the values 3.7 x 10(6) and 3.1 x 10(5) M(-1) for third and second EF-hands, respectively. The substitutions in the EF-hand 2 or 3 (or in both the sites simultaneously) do not disturb significantly either tertiary or secondary structure of the apo-protein. Amino acid substitutions, which have been designed to restore the calcium affinity of the EF-hand 4 (G160D, K161E, K162N, D165G and K166Q), increase the calcium capacity and affinity of recoverin but also perturb the protein structure and decrease the thermostability of its apo-form.  相似文献   

8.
Recoverin is a Ca2+-binding protein implicated in the Ca2+-dependent regulation of desensitization of visual receptor rhodopsin in vertebrate retinal rods. Here we report that Ca2+ sensitivity of recoverin regulating rhodopsin phosphorylation increases in the presence of the photoreceptor membranes enriched in raft structures. The observed effect is mediated by a key protein component of raft structures caveolin-1. The presence of recombinant fragment Phe81-Arg101 of the caveolin-1 cytoplasmic domain enhances Ca2+ affinity of recoverin, therefore affecting its Ca2+-dependent regulatory activity.  相似文献   

9.
Thirty-four primary hybridoma clones were prepared which expressed monoclonal antibodies to the Ca2+-binding protein recoverin. Among the resulting monoclonal antibodies, two Ca2+-dependent clones (mAb3 and mAb19) recognizing recoverin were detected by solid-phase immunoenzyme assay. In the presence of Ca2+, antibodies of the mAb3 and mAb19 clones bound to recoverin several times better than in the absence of Ca2+. The mAb3 and mAb19 antibodies recognized epitopes located inside the sequences Pro61-Met91 and Pro57-Tyr64 of the recoverin molecule, respectively. The possible mechanism of the Ca2+-dependent recognition of recoverin by the prepared monoclonal antibodies is discussed.Translated from Biokhimiya, Vol. 69, No. 12, 2004, pp. 1667–1674.Original Russian Text Copyright © 2004 by Tikhomirova, Goncharskaya, Senin.  相似文献   

10.
Antibodies AB60–72 and AB80–92 against two immune-dominant epitopes of photoreceptor Ca2+-binding protein recoverin, 60-DPKAYAQHVFRSF-72 and 80-LDFKEYVIALHMT-92, which can be exposed in a Ca2+-dependent manner, were obtained. The presence of AB60–72 or AB80–92 results in a slight increase in Ca2+-affinity of recoverin and does not affect significantly a Ca2+-myristoyl switch mechanism of the protein. However in the presence of AB60–72 or AB80–92 recoverin loses its ability to interact with rhodopsin kinase and consequently to perform a function of Ca2+-sensitive inhibitor of rhodopsin phosphorylation in photoreceptor cells.  相似文献   

11.
Xu X  Ishima R  Ames JB 《Proteins》2011,79(6):1910-1922
Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, serves as a calcium sensor in retinal rod cells. Ca2+‐induced conformational changes in recoverin promote extrusion of its covalently attached myristate, known as the Ca2+‐myristoyl switch. Here, we present nuclear magnetic resonance (NMR) relaxation dispersion and chemical shift analysis on 15N‐labeled recoverin to probe main chain conformational dynamics. 15N NMR relaxation data suggest that Ca2+‐free recoverin undergoes millisecond conformational dynamics at particular amide sites throughout the protein. The addition of trace Ca2+ levels (0.05 equivalents) increases the number of residues that show detectable relaxation dispersion. The Ca2+‐dependent chemical shifts and relaxation dispersion suggest that recoverin has an intermediate conformational state (I) between the sequestered apo state (T) and Ca2+ saturated extruded state (R): T ? I ? R. The first step is a fast conformational equilibrium ([T]/[I] < 100) on the millisecond time scale (τexδω < 1). The final step (I ? R) is much slower (τexδω > 1). The main chain structure of I is similar in part to the structure of half‐saturated E85Q recoverin with a sequestered myristoyl group. We propose that millisecond dynamics during T ? I may transiently increase the exposure of Ca2+‐binding sites to initiate Ca2+ binding that drives extrusion of the myristoyl group during I ? R. Proteins 2011; © 2011 Wiley‐Liss, Inc.  相似文献   

12.
Recoverin, a 23-kDa Ca2+-binding protein of the neuronal calcium sensing (NCS) family, inhibits rhodopsin kinase, a Ser/Thr kinase responsible for termination of photoactivated rhodopsin in rod photoreceptor cells. Recoverin has two functional EF hands and a myristoylated N terminus. The myristoyl chain imparts cooperativity to the Ca2+-binding sites through an allosteric mechanism involving a conformational equilibrium between R and T states of the protein. Ca2+ binds preferentially to the R state; the myristoyl chain binds preferentially to the T state. In the absence of myristoylation, the R state predominates, and consequently, binding of Ca2+ to the non-myristoylated protein is not cooperative. We show here that a mutation, C39A, of a highly conserved Cys residue among NCS proteins, increases the apparent cooperativity for binding of Ca2+ to non-myristoylated recoverin. The binding data can be explained by an effect on the T/R equilibrium to favor the T state without affecting the intrinsic binding constants for the two Ca2+ sites.  相似文献   

13.
Troponin C is the Ca2+-binding subunit of the troponin complex and is involved in the calcium control of muscle contraction. The X-ray structure of chicken TnC has been determined at 3Å resolution using a single heavy atom derivative and application of a novel phase improvement and phase extension procedure. The protein has an unusual dumbbell-shape with a length of about 70A. The N- and C-domains are connected by a single long α-helix of about 9 turns. Two metal binding sites (the Ca2+-Mg2+ sites) in the C-domain are occupied by metal ions in the crystals and the helix-loop-helix Ca2+ -binding folds are very similar to those in other known Ca2+ -binding proteins. In contrast, the Ca2+ -specific sites in the N-domain appear unoccupied and the two putative Ca2+ -binding folds have a vastly different structural arrangement. The conformational rearrangements in the N-domain upon Ca2+ binding are believed to be the trigger for a cascade of protein-protein interaction alterations which lead to muscle contraction.  相似文献   

14.
Bovine S100 G (calbindin D9k, small Ca2+-binding protein of the EF-hand superfamily) is considered as a calcium buffer protein; i.e., the binding of Ca2+ practically does not change its general conformation. A set of experimental approaches has been used to study structural properties of apo- and Ca2+-loaded forms of mouse S100 G (81.4% identity in amino acid sequence with bovine S100 G). This analysis revealed that, in contrast to bovine S100 G, the removal of calcium ions increases α-helices content of mouse S100 G protein and enhances its accessibility to digestion by α-chymotrypsin. Furthermore, mouse apo-S100 G is characterized by a decreased surface hydrophobicity and reduced tendency for oligomerization. Such behavior is typical of calcium sensor proteins. Apo-state of mouse S100 G still has rather compact structure, which can be cooperatively unfolded by temperature and GdnHCl. Computational analysis of amino acid sequences of S100 G proteins shows that these proteins could be in a disordered state upon a removal of the bound calcium ions. The experimental data show that, although mouse apo-S100 G is flexible compared to the Ca2+-loaded state, the apo-form is not completely disordered and preserves some cooperatively meting structure. The origin of the unexpectedly high stability of mouse S100 G can be rationalized by an exceptionally strong association of its N- and C-terminal parts containing the EF-hands I and II, respectively.  相似文献   

15.
Day IS  Reddy VS  Shad Ali G  Reddy AS 《Genome biology》2002,3(10):research0056.1-research005624

Background  

In plants, calcium (Ca2+) has emerged as an important messenger mediating the action of many hormonal and environmental signals, including biotic and abiotic stresses. Many different signals raise cytosolic calcium concentration ([Ca2+]cyt), which in turn is thought to regulate cellular and developmental processes via Ca2+-binding proteins. Three out of the four classes of Ca2+-binding proteins in plants contain Ca2+-binding EF-hand motif(s). This motif is a conserved helix-loop-helix structure that can bind a single Ca2+ ion. To identify all EF-hand-containing proteins in Arabidopsis, we analyzed its completed genome sequence for genes encoding EF-hand-containing proteins.  相似文献   

16.
Characterization of human cardiac calsequestrin and its deleterious mutants   总被引:2,自引:0,他引:2  
Mutations of conserved residues of human cardiac calsequestrin (hCSQ2), a high-capacity, low-affinity Ca2+-binding protein in the sarcoplasmic reticulum, have been associated with catecholamine-induced polymorphic ventricular tachycardia (CPVT). In order to understand the molecular mechanism and pathophysiological link between these CPVT-related missense mutations of hCSQ2 and the resulting arrhythmias, we generated three CPVT-causing mutants of hCSQ2 (R33Q, L167H, and D307H) and two non-pathological mutants (T66A and V76M) and investigated the effect of these mutations. In addition, we determined the crystal structure of the corresponding wild-type hCSQ2 to gain insight into the structural effects of those mutations. Our data show clearly that all three CPVT-related mutations lead to significant reduction in Ca2+-binding capacity in spite of the similarity of their secondary structures to that of the wild-type hCSQ2. Light-scattering experiments indicate that the Ca2+-dependent monomer-polymer transitions of the mutants are quite different, confirming that the linear polymerization behavior of CSQ is linked directly to its high-capacity Ca2+ binding. R33Q and D307H mutations result in a monomer that appears to be unable to form a properly oriented dimer. On the other hand, the L167H mutant has a disrupted hydrophobic core in domain II, resulting in high molecular aggregates, which cannot respond to Ca2+. Although one of the non-pathological mutants, T66A, shares characteristics with the wild-type, the other null mutant, V76M, shows significantly altered Ca2+-binding and polymerization behaviors, calling for careful reconsideration of its status.  相似文献   

17.
The goal of the present study is to explore whether Ca2+ and Mg2+-binding properties of isomeric Kv channel-interacting proteins (KChIPs) have different effects on their molecular structure and the binding with Kv channel. 8-Anilinonaphthalene- 1-sulfonate fluorescence measurement showed that KChIP4.1 and KChIP2.2 possessed one and two types of Ca2+-binding sites, respectively, and only one type of Mg2+-binding site was noted in the two KChIP proteins. Removal of EF-hand 4 (EF-4) caused a marked drop in their high affinities for Ca2+, but the binding affinity for Mg2+ remained mostly the same. Unlike KChIP4.1, the intact EF-4 was essential for the Kv channel-binding ability of KChIP2.2 in a metal-free buffer. Nevertheless, the interaction of wild-type KChIPs and EF-4-truncated mutants with Kv channel was enhanced by the addition of Mg2+ and Ca2+. In contrast to KChIP4.1, the thermal stability of KChIP2.2 was decreased by the binding of Mg2+ and Ca2+. These results suggest that the conformational change with metal-bound KChIP4.1 is crucial for its interaction with Kv channel but not for KChIP2.2, and that the Mg2+- and Ca2+-binding properties of KChIP2.2 and KChIP4.1 have different effects on their molecular structure.  相似文献   

18.
Polycystin-2 (PC2) belongs to the transient receptor potential (TRP) family and forms a Ca2+-regulated channel. The C-terminal cytoplasmic tail of human PC2 (HPC2 Cterm) is important for PC2 channel assembly and regulation. In this study, we characterized the oligomeric states and Ca2+-binding profiles in the C-terminal tail using biophysical approaches. Specifically, we determined that HPC2 Cterm forms a trimer in solution with and without Ca2+ bound, although TRP channels are believed to be tetramers. We found that there is only one Ca2+-binding site in the HPC2 Cterm, located within its EF-hand domain. However, the Ca2+ binding affinity of the HPC2 Cterm trimer is greatly enhanced relative to the intrinsic binding affinity of the isolated EF-hand domain. We also employed the sea urchin PC2 (SUPC2) as a model for biophysical and structural characterization. The sea urchin C-terminal construct (SUPC2 Ccore) also forms trimers in solution, independent of Ca2+ binding. In contrast to the human PC2, the SUPC2 Ccore contains two cooperative Ca2+-binding sites within its EF-hand domain. Consequently, trimerization does not further improve the affinity of Ca2+ binding in the SUPC2 Ccore relative to the isolated EF-hand domain. Using NMR, we localized the Ca2+-binding sites in the SUPC2 Ccore and characterized the conformational changes in its EF-hand domain due to trimer formation. Our study provides a structural basis for understanding the Ca2+-dependent regulation of the PC2 channel by its cytosolic C-terminal domain. The improved methodology also serves as a good strategy to characterize other Ca2+-binding proteins.  相似文献   

19.
The tellurium oxyanion TeO32− has been used in the treatment of infectious diseases caused by mycobacteria. However, many pathogenic bacteria show tellurite resistance. Several tellurite resistance genes have been identified, and these genes mediate responses to diverse extracellular stimuli, but the mechanisms underlying their functions are unknown. To shed light on the function of KP-TerD, a 20.5 -kDa tellurite resistance protein from a plasmid of Klebsiella pneumoniae, we have determined its three-dimensional structure in solution using NMR spectroscopy. KP-TerD contains a β-sandwich formed by two five-stranded β-sheets and six short helices. The structure exhibits two negative clusters in loop regions on the top of the sandwich, suggesting that KP-TerD may bind metal ions. Indeed, thermal denaturation experiments monitored by circular dichroism and NMR studies reveal that KP-TerD binds Ca2+. Inductively coupled plasma-optical emission spectroscopy shows that the binding ratio of KP-TerD to Ca2+ is 1:2. EDTA (ethylenediaminetetraacetic acid) titrations of Ca2+-saturated KP-TerD monitored by one-dimensional NMR yield estimated dissociation constants of 18  and 200 nM for the two Ca2+-binding sites of KP-TerD. NMR structures incorporating two Ca2+ ions define a novel bipartite Ca2+-binding motif that is predicted to be highly conserved in TerD proteins. Moreover, these Ca2+-binding sites are also predicted to be present in two additional tellurite resistance proteins, TerE and TerZ. These results suggest that some form of Ca2+ signaling plays a crucial role in tellurite resistance and in other responses of bacteria to multiple external stimuli that depend on the Ter genes.  相似文献   

20.
Neuronal calcium sensor-1 (NCS-1) is a major modulator of Ca2+ signaling with a known role in neurotransmitter release. NCS-1 has one cryptic (EF1) and three functional (EF2, EF3, and EF4) EF-hand motifs. However, it is not known which are the regulatory (Ca2+-specific) and structural (Ca2+- or Mg2+-binding) EF-hand motifs. To understand the specialized functions of NCS-1, identification of the ionic discrimination of the EF-hand sites is important. In this work, we determined the specificity of Ca2+ binding using NMR and EF-hand mutants. Ca2+ titration, as monitored by [15N,1H] heteronuclear single quantum coherence, suggests that Ca2+ binds to the EF2 and EF3 almost simultaneously, followed by EF4. Our NMR data suggest that Mg2+ binds to EF2 and EF3, thereby classifying them as structural sites, whereas EF4 is a Ca2+-specific or regulatory site. This was further corroborated using an EF2/EF3-disabled mutant, which binds only Ca2+ and not Mg2+. Ca2+ binding induces conformational rearrangements in the protein by reversing Mg2+-induced changes in Trp fluorescence and surface hydrophobicity. In a larger physiological perspective, exchanging or replacing Mg2+ with Ca2+ reduces the Ca2+-binding affinity of NCS-1 from 90 nM to 440 nM, which would be advantageous to the molecule by facilitating reversibility to the Ca2+-free state. Although the equilibrium unfolding transitions of apo-NCS-1 and Mg2+-bound NCS-1 are similar, the early unfolding transitions of Ca2+-bound NCS-1 are partially influenced in the presence of Mg2+. This study demonstrates the importance of Mg2+ as a modulator of calcium homeostasis and active-state behavior of NCS-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号