首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
微生物发酵生产α-酮戊二酸研究进展   总被引:2,自引:0,他引:2  
α-酮戊二酸是微生物三羧酸循环中重要的代谢中间产物,是连接细胞内碳-氮代谢的关键节点,具有广泛的应用价值.文中从4个方面归纳了国内外关于α-酮戊二酸研究进展:能够过量积累α-酮戊二酸的原核和真核微生物的发现和筛选;硫胺素缺陷型和氮源饥饿引起的α-酮戊二酸过量积累的生理学特性;控制培养环境中的pH、溶氧和辅因子对生产α-酮戊二酸发酵过程控制与优化;调控辅因子再生和代谢途径改造高产菌株.最后,讨论了微生物法生产α-酮戊二酸存在的不足和今后研究的方向.  相似文献   

2.
目前,应用解脂亚洛酵母发酵生产α-酮戊二酸由于产量和底物转化率低、生产周期长等问题,仍未大规模工业化生产。为了解决这些问题,以研究室诱变选育获得的1株高产α-酮戊二酸的解脂亚洛酵母Yarrowia lipolytica WSH-Z06 C3为出发菌株,考察了该菌株在50 L发酵罐中转速、碳酸钙浓度、溶氧以及补料方式(多节点补料、恒速补料)等因素对α-酮戊二酸积累的影响。结果表明,当转速为300 r/min时,α-酮戊二酸和丙酮酸的产量分别为32.4 g/L和19.66 g/L;碳酸钙质量浓度为20 g/L时,α-酮戊二酸的产量提高至38.55 g/L,丙酮酸降低至8.28 g/L;控制溶氧水平在50%时,α-酮戊二酸产量为42.39 g/L,此时丙酮酸为6.22 g/L。比较高初始甘油浓度和不同的补料发酵策略,发现恒速补料效果最好,发酵144 hα-酮戊二酸产量达到66.27 g/L,丙酮酸产量为20.82 g/L。通过上述发酵过程参数的优化,α-酮戊二酸的产量和底物的转化率比未优化前分别提高了67.3%和4.56%,为解脂亚洛酵母工业化生产α-酮戊二酸提供一定参考。  相似文献   

3.
以光滑拟球酵母为研究模型,研究α-酮戊二酸的浓度情况。通过单因素实验得到α-酮戊二酸积累最佳浓度的各单因素条件为:葡萄糖浓度140g/L,NH4Cl浓度5g/L。在碳源(30g/L葡萄糖初始浓度)匮乏条件下加入丙酮酸30g/L,在此条件下丙酮酸转化为α-酮戊二酸的转化率最高达53.7%。以30g/L丙酮酸为唯一碳源时在7L发酵罐中光滑拟球酵母可生成浓度为10.7g/Lα-酮戊二酸,外源丙酮酸的转化率可达66.9%。这一结果表明,T.glabrata具有将丙酮酸转化为α-KG的能力。  相似文献   

4.
采用简易的偶联终点显色反应(Trinder显色反应),从土壤中分离出高产谷氨酸氧化酶(LGOX)的菌株不透明红球菌Rhodococcus opacus FMME1-41,并对此菌株的产酶特性进行研究。结果表明:该菌株所产LGOX主要分泌在发酵液中,对L-谷氨酸具有较强的底物专一性,最适pH 6.5,最适温度为35℃,Mn~(2+)是该酶的激活剂。通过发酵培养基优化,培养30 h时LGOX活力达到6.4 U/m L。利用该酶转化L-谷氨酸生产α-酮戊二酸,在最佳转化条件下转化20 h,α-酮戊二酸产量达到91.2 g/L,转化率为91.8%,α-KG生产强度为4.56 g/(L·h)。  相似文献   

5.
对具有发酵产α-酮戊二酸能力的解脂耶氏酵母(Yarrowia Lipolytica)ZY-4进行了紫外诱变和NTG诱变育种,筛选得到产量提高的突变株,并对突变株的发酵培养基进行了优化,结果表明,紫外诱变和NTG诱变后筛选到的突变株分别比原始出发菌株产量提高了67.8%和110%。优化后发酵培养基成分为甘油8%,氯化铵5.0 g/L,硫胺素1.0μg/L,磷酸二氢钾1.0 g/L,七水硫酸镁0.5 g/L,培养基优化后α-酮戊二酸产量比原始出发菌株提高了232.4%。  相似文献   

6.
张旦旦  刘立明  堵国成  陈坚 《微生物学报》2009,49(12):1584-1589
摘要:【目的】研究α-酮戊二酸脱氢酶系在光滑球拟酵母碳代谢流、能量代谢和氨基酸代谢中的生理作用。【方法】通过敲除光滑球拟酵母中编码α-酮戊二酸脱氢酶系中E1酶的基因kgd1,构建α-酮戊二酸脱氢酶活性缺失菌株T. glabrata kgd1::kan,并考察KGDH缺失引起TCA循环关键酶活性,碳代谢流量以及胞内氨基酸和能荷水平等方面的变化。【结果】光滑球拟酵母中α-酮戊二酸脱氢酶活性的缺失导致:(1)细胞启动乙醛酸途径,通过形成TCA-乙醛酸循环实现TCA循环的正常代谢;(2)胞内NADH/NAD+水平  相似文献   

7.
提高光滑球拟酵母乙酰辅酶A水平促进α-酮戊二酸合成   总被引:1,自引:0,他引:1  
[目的]为了了解光滑球拟酵母中乙酰辅酶A含量对其碳代谢及其通量的影响.[方法]将来源于酿酒酵母中编码乙酰辅酶A合成酶ACS2基因过量表达于发酵法生产丙酮酸的生产菌株Torulopsis glabrata中,获得了一株乙酰辅酶A合成酶活性提高9.2倍(1.20 U/mg protein)的重组菌T. glabrataACS2-1.[结果]与出发菌株WSH-IP303相比,重组菌T glabrataACS2-1:(1)能以乙酸为唯一碳源在胞内积累0.94 mmol/(L·g DCW)的L酰辅酶A;(2)以葡萄糖为唯一碳源时胞内乙酰辅A浓度、α-酮戊二酸产量和Cα-KG,Cpyr是出发菌株WSH-IP303的3.22、2.05和2.52倍;(3)在葡萄糖培养基中添加4 g/L 乙酸,使乙酰辅酶A浓度、α-酮戊二酸产量和CαKG>>/Cpyr是出发菌株WSH-IP303的4.55、2.47和3.75倍,α-酮戊二酸浓度达到17.8 g/L.[结论]这一结果表明,改变细胞内关键辅因子的浓度能使碳代谢流的流向与通量发生改变,从积累丙酮酸转向过量积累α-酮戊二酸.  相似文献   

8.
α-酮酸是一种同时含有羧基和酮基的双官能团有机化合物,广泛应用于食品、药品和化妆品等行业。为了满足环境友好、安全高效和可持续发展的社会要求,利用酶转化法生产α-酮酸受到人们的广泛关注。文中从酶的筛选、酶的改造以及酶的转化条件优化3个方面介绍丙酮酸、α-酮戊二酸、酮亮氨酸、酮缬氨酸、苯丙酮酸和酮蛋氨酸酶法合成的研究状况,并展望了α-酮酸进一步高效生产的发展方向。  相似文献   

9.
[目的]研究α-酮戊二酸脱氢酶系在光滑球拟酵母碳代谢流、能量代谢和氨基酸代谢中的生理作用.[方法]通过敲除光滑球拟酵母中编码α-酮戊二酸脱氢酶系中E1酶的基因kgd1,构建α-酮戊二酸脱氢酶活性缺失菌株T.glabrata kgd1::kan,并考察KGDH缺失引起TCA循环关键酶活性,碳代谢流量以及胞内氨基酸和能荷水平等方面的变化.[结果]光滑球拟酵母中α-酮戊二酸脱氢酶活性的缺失导致:(1)细胞启动乙醛酸途径,通过形成TCA-乙醛酸循环实现TCA循环的正常代谢;(2)胞内NADH/NAD+水平下降33.7%,ATP/ADP水平下降31.8%,而与NADH代谢相关的丙酮酸脱氢酶、异柠檬酸脱氢酶和苹果酸脱氢酶的活性分别提高58.1%、33.3%和32.5%;(3)胞内丙酮酸含量下降50.1%,而胞内琥珀酸、苹果酸和α-酮戊二酸含量则分别增加了172.7%、66.1%和41.1%;(4)丙酮酸族氨基酸含量下降29.3%,而胞内谷氨酸族氨基酸和天冬氨酸族氨基酸含量则提高了34.7%和26.8%.[结论]上述研究结果表明,α-酮戊二酸脱氢酶系在微生物细胞中心碳代谢、能量代谢和氨基酸代谢中发挥着重要作用.  相似文献   

10.
聚γ-谷氨酸(γ-PGA)及其衍生物是一种新型土壤修复和改良材料,能吸附土壤中的重金属和放射性核物质等污染物,也可作为保水材料应用于干旱环境。NaCl、Mn(Ⅱ)、L-谷氨酰胺和α-酮戊二酸四因素对Bacillus licheniformisWBL-3合成γ-PGA产量及分子量有重要影响。分别用L-谷氨酰胺和α-酮戊二酸代替L-谷氨酸,Bacillus licheniformisWBL-3未产生γ-PGA。单因素试验表明:γ-PGA产量均随四因素浓度的增大呈现先增大后减小的趋势,γ-PGA产量分别在NaCl,Mn(Ⅱ)、L-谷氨酰胺和α-酮戊二酸浓度为6%,100μmol.L-1,1.5 mmol.L-1和10 mmol.L-1时达到最大值35.79g.L-1,24.77 g.L-1,30.07 g.L-1和26.09 g.L-1;γ-PGA分子量随NaCl浓度的增大而增大,随α-酮戊二酸浓度的增大而减小,随Mn(Ⅱ)、L-谷氨酰胺浓度的增大而呈现先增大后减小的趋势。正交试验证明了单因素试验的结论,四因素间没有交互作用的影响,最优组合为NaCl:6%,α-酮戊二酸:10 mmol.L-1,Mn(Ⅱ):100μmol.L-1,L-谷氨酰胺:1.5 mmol.L-1,产量达到55.62 g.L-1。  相似文献   

11.
环境条件对丙酮酸分批发酵的影响   总被引:1,自引:0,他引:1  
考察了搅拌转速、pH和温度对丙酮酸分批发酵的影响。高转速(500r/min)下,丙酮酸产率较高(71%),但葡萄糖消耗速度较慢(1.23g/(L·h));低转速(300r/min)下,细胞消耗葡萄糖的速度加快(1.95g/(L·h)),而丙酮酸产率(0.48%)却明显下降。将搅拌转速恒定在400r/min可在一定程度上获得较高的丙酮酸产率(0.62%)和葡萄糖消耗速度(1.66g/(L·h))。CaCO3调节pH时,较多碳流从丙酮酸节点转向α-酮戊二酸节点和细胞生长,最终丙酮酸产量比NaOH调节pH时的发酵结果低38.7%;NH3·H2O调节pH时最终细胞浓度和丙酮酸产量仅为NaOH调节时的77.8%和90.9%。pH5.5时最利于丙酮酸的合成。较高的发酵温度加速T.glabrata积累丙酮酸,但同时会导致α-酮戊二酸的提前积累;而较低的温度下甘油和α-酮戊二酸积累较少,丙酮酸发酵的最适温度为28~30℃。  相似文献   

12.
L-谷氨酸是世界上第一大宗氨基酸产品,广泛应用于食品医药及化工等行业。以谷氨酸高产菌谷氨酸棒杆菌(Corynebacterium glutamicum) G01为出发菌株,首先通过敲除主要副产物丙氨酸合成相关基因-丙氨酸氨基转移酶编码基因(alaT),降低了发酵副产物丙氨酸含量。其次,α-酮戊二酸节点碳流量对谷氨酸合成起重要作用,因此,采用核糖体结合位点(ribosome-binding site,RBS)序列优化降低了α-酮戊二酸脱氢酶的活性,强化了谷氨酸合成代谢流。同时通过筛选不同来源的谷氨酸脱氢酶,加强了α-酮戊二酸内源转化为谷氨酸的能力。接着,对谷氨酸转运蛋白进行理性设计,提高了谷氨酸的外排能力。最后,对基于以上策略构建的整合菌株进行了5 L发酵罐发酵优化,通过梯度升温结合分批补料策略,谷氨酸产量为(136.33±4.68) g/L,较原始菌的产量(96.53±2.32) g/L提高了41.2%;糖酸转化率为55.8%,较原始菌的44.2%提高了11.6%;且降低了副产物丙氨酸的含量。以上策略一定程度上提高了谷氨酸的产量与糖酸转化率,可为谷氨酸生产菌株的代谢改造提供参考。  相似文献   

13.
α-酮戊二酸和丙酮酸是重要的酮酸,广泛应用于食品、医药等领域。以本研究室在前期的工作中诱变选育的Yarrowia lipolytica WSH-Z06 C3为出发菌株,高效联产α-酮戊二酸和丙酮酸。在摇瓶水平上初步确定了最佳氮源浓度以及接种密度。在此基础上,重点考察了在15 L发酵罐上硫胺素浓度以及溶氧控制参数对酮酸联产的影响。结果显示,硫胺素最佳浓度为0.2μg/L,α-酮戊二酸和丙酮酸分别高达24.5、53.7 g/L。与未优化的对照相比,酮酸总产量和丙酮酸总转化率均提高了57.9%。溶氧水平控制在50%,发酵96 h酮酸总产量高达53.2 g/L。通过两阶段溶氧调控,酮酸总产量高达64.7 g/L,比未调控前提高了21.2%。通过硫胺素与溶氧水平的优化,显著提高了酮酸的产量,进一步为酮酸的工业化生产提供参考。  相似文献   

14.
胶质母细胞瘤的基因组突变分析中发现的异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)突变对胶质瘤的认识具有突破性意义.随后,在胶质瘤中发现了IDH1的R132碱基和IDH2的R172碱基突变.IDH1突变较多的发生在WHOⅡ~Ⅲ级胶质瘤和继发胶质母细胞瘤中.这种突变改变了异柠檬酸脱氢酶的结构,从而使将异柠檬酸转化为α-酮戊二酸的能力丧失,而获得将α-酮戊二酸转化为D-2-羟基戊二酸这一新的酶活性.在临床中,IDH1和IDH2突变已经显示对胶质瘤患者有诊断和预后意义.同时,现今也发展了一些检测方法.  相似文献   

15.
L-谷氨酸氧化酶的研究进展   总被引:1,自引:0,他引:1  
L-谷氨酸氧化酶(L-glutamate oxidase,GLOD)是一种以FAD为辅基的黄素蛋白酶类,可以专一性地氧化谷氨酸生成过氧化氢、氨和α-酮戊二酸,广泛应用于食品、医药、发酵等领域。从谷氨酸氧化酶的微生物来源、酶学性质、发酵条件、分离纯化及分析应用等方面进行阐述,并对其研究前景进行展望。  相似文献   

16.
进一步研究DNP对大白鼠肝脏綫粒体琥珀酸氧化的激活和抑制,发現当琥珀酸氧化已被DNP抑制时琥珀酸脫氫酶并沒有受到明显的抑制。DNP对琥珀酸氧化的抑制可以被α-酮戊二酸、(?)柠檬酸、柠檬酸、丙酮酸、β-羟基丁酸等解除。α-酮戊二酸的解除作用与底物水平磷酸化作用无关,但与脫氫过程有密切关系;当加入0.2mM亚砷酸鈉时,α-酮戊二酸不再能使呼吸恢复。谷氨酸解除DNP对琥珀酸氧化抑制的作用不受天門冬氨酸α-酮戊二酸轉氨酶的抑制剂环絲氨酸的影响,Amytal使呼吸恢复的作用与线粒体內源底物含量有关?疚慕Y果进一步說明琥珀酸氧化需要能量激活,我們认为某些底物脫氫生成的NADH可以通过琥珀酸氧化引起NAD~+需能还原的逆反应生成高能磷酸化合物因而激活了琥珀酸的氧化。通过这样的途径生成高能磷酸化合物可能是对DNP較不敏感的。  相似文献   

17.
本文报导了关于4天水稻黄化幼苗地上部的亚细胞颗粒氧化丙酮酸的途径的研究。下述结果证明在其中有三羧酸循环运行:1.琥珀酸、α-酮基戊二酸能迅速地被氧化,柠檬酸、苹果酸、延胡索酸以顺序降低的速率为此颗粒制剂氧化。2.丙酮酸的氧化能为催化量的琥珀酸所引发,说明有缩合酶的活性存在。3.琥珀酸的氧化能为丙二酸所抑制。α-酮基戊二酸的氧化能为亚砷酸钠所抑制,并且此被抑制的耗氧可借加入琥珀酸而得到恢复。4.氧化产物的纸上层析鉴定表明:琥珀酸能转化为延胡索酸、苹果酸和异柠檬酸;α-酮基戊二酸能转化为琥珀酸、延胡索酸和苹果酸。对亚细胞制剂及组织匀浆所作异柠檬酸酶及苹果酸合成酶的活性鉴定指出,在水稻幼苗氧化丙酮酸的途径中,乙醛酸循环可能与三羧酸循环同时存在。  相似文献   

18.
研究了家蚕(Bombyx mori L.),天蚕蛾科之蓖麻蚕(Philosama cynthia ricini B.)及柞蚕(Antheraea pernyi G.)丝腺体后部自L-天门冬氨酸与α-酮戊二酸形成丙氨酸的机制。以上各种蚕的丝腺体组织都可利用L-天门冬氨酸与α-酮戊二酸形成丙氨酸,谷氨酸及CO_2。当存在DL-环丝氨酸(10~(-4)M)时,形成较多的谷氨酸与丙酮酸,而丙氨酸之量显著地减少。以L-天门冬氨酸与α-酮戊二酸或以L-谷氨酸与丙酮酸为底物,对丙氨酸之形成具有相同的抑制程度。DL-环丝氨酸(10~(-4))并不抑制谷-天转氨酶与草酰乙酸脱羧酶,但在同样条件下,可显著抑制谷-丙转氨酶的活力(~90%)。此外,若以L-天门冬氨酸或其与小量α-酮戊二酸为底物,尤其是用透析后之酶液,并无显著的丙氨酸与CO_2形成。我们认为,自L-天门冬氨酸与α-酮戊二酸形成之丙氨酸,并非通过Bheemeswar提出的L-天门冬氨酸β-脱羧酶之作用,而是经过三个相继的反应,即在谷-天转氨酶催化下,形成谷氨酸与草酰乙酸,后者除非酶促分解外,在草酰乙酸脱羧酶作用下,形成丙酮酸与CO_2;由以上两反应所形成之谷氨酸与丙酮酸,在蚕丝腺普遍存在的谷-丙转氨酶催化下形成丙氨酸(见图8)。  相似文献   

19.
α-酮戊二酸(α-ketoglutarate,α-KG)是戊二酸带酮基的衍生物中的一种,是三羧酸循环中重要的代谢中间产物,通过异柠檬酸脱氢酶(IDH)催化异柠檬酸氧化脱羧和谷氨酸脱氢酶催化谷氨酸氧化脱氨产生,是连接细胞内碳-氮代谢的关键节点。动脉粥样硬化(atherosclerosis,As)是一种慢性进行性疾病,病因复杂,且容易引发多种心脑血管疾病。本文从血管内皮细胞功能、自噬、DNA甲基化修饰、能量代谢、血管衰老等方面探讨α-KG与As之间的关系及其调控机制。  相似文献   

20.
以四种抗冷性不同的水稻芽鞘为材料,分析了它们的线粒体膜脂脂肪酸成分和含量、线粒体α-酮戊二酸氧化酶活力,并在线粒体上添加含油酸酯的吐温80和清洗吐温80之后测定了α-酮戊二酸氧化酶活力的变化。 四种抗冷性不同的水稻种子,其干胚膜脂脂肪酸成分相同,但是它们的脂肪酸不饱和指数(IUFA)有明显差异,这种差异与品种抗冷性成正相关。品种间芽鞘线粒体膜脂脂肪酸成分相同,它们的脂肪酸不饱和指数也有明显差异,与品种抗冷性也成正相关。四个水稻品种的芽鞘线粒体α-酮戊二酸氧化酶活力在10~42℃间存在着两个温度折点,其中低温折点可能与品种抗冷性有关。秈稻“二九青”芽鞘线粒体添加吐温80和清洗吐温80后,线粒体α-酮戊二酸氧化酶活力的温度折点均比对照线粒体低。证明增加膜脂中不饱和脂肪酸能降低膜结合酶活力的温度折点,膜脂脂肪酸不饱和度与膜结合酶活力和水稻抗冷性密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号