首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The coding sequence of the Haemophilus influenzae ORF I gene was amplified by PCR and cloned into different Escherichia coli expression vectors. The ORF I-encoded protein was approximately 90 kDa and bound 3H-benzyl-penicillin and 125I-cephradine. This high-molecular-weight penicillin-binding protein (PBP) was also shown to possess transglycosylase activity, indicating that the ORF I product is a bifunctional PBP. The ORF I protein was capable of maintaining the viability of E. coli delta ponA ponB::spcr cells in transcomplementation experiments, establishing the functional relevance of the significant amino acid homology seen between E. coli PBP 1A and 1B and the H. influenzae ORF I product. In addition, the physiological functioning of the H. influenzae ORF I (PBP 1A) product in a heterologous species established the ability of the enzyme not only to recognize the E. coli substrate but also to interact with heterologous cell division proteins. The affinity of the ORF I product for 3H-benzylpenicillin and 125I-cephradine, the MIC of beta-lactams for E. coli delta ponA ponB::spcr expressing the ORF I gene, and the amino acid alignment of the PBP 1 family of high-molecular-weight PBPs group the ORF I protein into the PBP 1A family of high-molecular-weight PBPs.  相似文献   

2.
Previous studies have shown that Bacillus subtilis cells lacking penicillin-binding protein 1 (PBP1), encoded by ponA, have a reduced growth rate in a variety of growth media and are longer, thinner, and more bent than wild-type cells. It was also recently shown that cells lacking PBP1 require increased levels of divalent cations for growth and are either unable to grow or grow as filaments in media low in Mg2+, suggesting a possible involvement of PBP1 in septum formation under these conditions. Using epitope-tagging and immunofluorescence microscopy, we have now shown that PBP1 is localized at division sites in vegetative cells of B. subtilis. In addition, we have used fluorescence and electron microscopy to show that growing ponA mutant cells display a significant septation defect, and finally by immunofluorescence microscopy we have found that while FtsZ localizes normally in most ponA mutant cells, a significant proportion of ponA mutant cells display FtsZ rings with aberrant structure or improper localization, suggesting that lack of PBP1 affects FtsZ ring stability or assembly. These results provide strong evidence that PBP1 is localized to and has an important function in the division septum in B. subtilis. This is the first example of a high-molecular-weight class A PBP that is localized to the bacterial division septum.  相似文献   

3.
A fragment from the ponB region of the Escherichia coli chromosome comprising the promoterless sequence encoding penicillin-binding protein 1B (PBP 1B) has been cloned in a broad-host-range expression vector under the control of the kanamycin resistance gene promoter present in the vector. The hybrid plasmid (pJP3) was used to transform appropriate strains of Salmonella typhimurium, Pseudomonas putida, and Pseudomonas aeruginosa. In all instances, the coding sequence was expressed in the heterologous hosts, yielding a product with electrophoretic mobility, protease accessibility, membrane location, and beta-lactam-binding properties identical to those of native PBP 1B in E. coli. These results indicated that PBP 1B of E. coli is compatible with the cytoplasmic membrane environment of unrelated bacterial species and support the idea that interspecific transfer of mutated alleles of genes coding for PBPs could potentially be an efficient spreading mechanism for intrinsic resistance to beta-lactams.  相似文献   

4.
Furazlocillin binds selectively to penicillin-binding protein 3 (PBP-3), prevents septation of Escherichia coli, and allows the cells to form long filaments without lysis. The effect of furazlocillin on the morphology, autolysis, and murein synthesis of E. coli mutants deficient in either PBP-1A, PBP-1Bs, or PBP-2 was studied. The results reveal that PBP-1A and PBP-1Bs functions are not equivalent since furazlocillin affects the morphology, autolysis, and murein synthesis of PBP1A- mutants quite differently from that of PBP-1Bs mutants. Different "PBP-2-" mutants were found to respond to furazlocillin in dramatically different ways: strain LS-1 cells formed elongated rods with a central bulge which eventually lysed, whereas SP6 cells formed stable "barbells" in which the two daughter cells were well separated but remained connected by a thick central region.  相似文献   

5.
Deletions of the ponA and ponB genes of Escherichia coli have been constructed in vitro and recombined into the chromosome to produce strains that completely lack penicillin-binding protein 1A or penicillin-binding protein 1B. In each case a DNA fragment internal to the gene was replaced by a fragment encoding an antibiotic resistance. The ponA and ponB deletions can therefore be readily introduced into other E. coli strains by P1 transduction of the antibiotic resistance. Although the complete absence of penicillin-binding protein 1A or penicillin-binding protein 1B was tolerated, the absence of both of these proteins was shown to result in bacterial lysis.  相似文献   

6.
Analysis of the functional role of penicillin-binding protein 1B (PBP1B) of Escherichia coli led us to find a new mutation able to suppress thermosensitive growth of the pbpB2158(Ts) mutant strain, which harbors a thermosensitive PBP3 protein only in the presence of a ponB+ background. The mutation, originally isolated in a strain with a high dosage of PBP1B, could also suppress the pbpB(Ts) phenotype when a single copy of the ponB gene was introduced. These results clearly give further support to the implication of PPB1B in the septation process in Escherichia coli.  相似文献   

7.
The murein (peptidoglycan) sacculus is an essential polymer embedded in the bacterial envelope. The Escherichia coli class B penicillin-binding protein (PBP) 3 is a murein transpeptidase and essential for cell division. In an affinity chromatography experiment, the bifunctional transglycosylase-transpeptidase murein synthase PBP1B was retained by PBP3-sepharose when a membrane fraction of E. coli was applied. The direct protein-protein interaction between purified PBP3 and PBP1B was characterized in vitro by surface plasmon resonance. The interaction was confirmed in vivo employing two different methods: by a bacterial two-hybrid system, and by cross-linking/co-immunoprecipitation. In the bacterial two-hybrid system, a truncated PBP3 comprising the N-terminal 56 amino acids interacted with PBP1B. Both synthases could be cross-linked in vivo in wild-type cells and in cells lacking FtsW or FtsN. PBP1B localized diffusely and in foci at the septation site and also at the side wall. Statistical analysis of the immunofluorescence signals revealed that the localization of PBP1B at the septation site depended on the physical presence of PBP3, but not on the activity of PBP3. These studies have demonstrated, for the first time, a direct interaction between a class B PBP (PBP3) and a class A PBP (PBP1B) in vitro and in vivo, indicating that different murein synthases might act in concert to enlarge the murein sacculus during cell division.  相似文献   

8.
A Dopazo  A Tormo  M Aldea    M Vicente 《Journal of bacteriology》1987,169(4):1772-1776
The inhibition of cell division caused by induction of the SOS pathway in Escherichia coli structurally blocks septation, as deduced from two sets of results. Potential septation sites active at the time of SOS induction became inactivated, while those initiated during the following doubling time were active. Penicillin resistance increased in wild-type UV light-irradiated cells, a behavior similar to that observed in mutants in which structural blocks were introduced by inactivation of FtsA. Potential septation sites that have been structurally blocked by either the SOS division inhibitor, furazlocillin inhibition of PBP3, or inactivation of a TER pathway component, FtsA3, could be reactivated one doubling time after removal of the inhibitory agent in the presence of an active lon gene product. Reactivation of potential septation sites blocked by the presence of an inactivated FtsA3 was significantly lower when the lon protease was not active, suggesting that Lon plays a role in the removal of inactivated TER pathway products from the blocked potential septation sites.  相似文献   

9.
Escherichia coli cells lacking low-molecular-weight penicillin-binding proteins (LMW PBPs) exhibit morphological alterations that also appear when the septal protein FtsZ is mislocalized, suggesting that peptidoglycan modification and division may work together to produce cell shape. We found that in strains lacking PBP5 and other LMW PBPs, higher FtsZ concentrations increased the frequency of branched cells and incorrectly oriented Z rings by 10- to 15-fold. Invagination of these rings produced improperly oriented septa, which in turn gave rise to asymmetric cell poles that eventually elongated into branches. Branches always originated from the remnants of abnormal septation events, cementing the relationship between aberrant cell division and branch formation. In the absence of PBP5, PBP6 and DacD localized to nascent septa, suggesting that these PBPs can partially substitute for the loss of PBP5. We propose that branching begins when mislocalized FtsZ triggers the insertion of inert peptidoglycan at unusual positions during cell division. Only later, after normal cell wall elongation separates the patches, do branches become visible. Thus, a relationship between the LMW PBPs and cytoplasmic FtsZ ultimately affects cell division and overall shape.  相似文献   

10.
The penicillin-binding proteins (PBPs) of 209 cell division (or growth) temperature-sensitive mutants of Streptococcus faecium were analyzed in this study. A total of nine strains showed either constitutive or temperature-sensitive conditional damage in the PBPs. Analysis of these nine strains yielded the following results: one carried a PBP 1 constitutively showing a lower molecular weight; one constitutively lacked PBP 2; two lacked PBP 3 at 42 degrees C, but not at 30 degrees C; one was normal at 30 degrees C but at 42 degrees C lacked PBP 3 and overproduced PBP 5; two were normal at 42 degrees C and lacked PBP 5 at 30 degrees C; one constitutively lacked PBP 5; and one carried a PBP 6 constitutively split in two bands. The mutant lacking PBP 3 and overproducing PBP 5 continued to grow at 42 degrees C for 150 min and then lysed. Revertants selected for growth capability at 42 degrees C from the mutants altered in PBPs 5 and 6 maintained the same PBP alterations, while those isolated from the strains with altered PBP 1 or lacking PBP 2 or PBP 3 showed a normal PBP pattern. Penicillin-resistant derivatives were isolated at 30 degrees C from the mutants lacking PBP 2 and from that lacking PBP 3. All these derivatives continued to show the same PBP damage as the parents, but overproduced PBP 5 and grew at 42 degrees C. These findings indicate that high-molecular-weight, but not low-molecular-weight, PBPs are essential for cell growth in S. faecium. This is in complete agreement with previous findings obtained with a different experimental system. On the basis of both previous and present data it is suggested that PBPs 1, 2, and 3 appear necessary for cell growth at optimal temperature (and at maximal rate), but not for cell growth at a submaximal one (or at a reduced rate), and an overproduced PBP 5 is capable of taking over the function of PBPs 1, 2, and 3.  相似文献   

11.
Upon ingestion of contaminated food, Listeria monocytogenes can cause serious infections in humans that are normally treated with β‐lactam antibiotics. These target Listeria's five high molecular weight penicillin‐binding proteins (HMW PBPs), which are required for peptidoglycan biosynthesis. The two bi‐functional class A HMW PBPs PBP A1 and PBP A2 have transglycosylase and transpeptidase domains catalyzing glycan chain polymerization and peptide cross‐linking, respectively, whereas the three class B HMW PBPs B1, B2 and B3 are monofunctional transpeptidases. The precise roles of these PBPs in the cell cycle are unknown. Here we show that green fluorescent protein (GFP)‐PBP fusions localized either at the septum, the lateral wall or both, suggesting distinct and overlapping functions. Genetic data confirmed this view: PBP A1 and PBP A2 could not be inactivated simultaneously, and a conditional double mutant strain is largely inducer dependent. PBP B1 is required for rod‐shape and PBP B2 for cross‐wall biosynthesis and viability, whereas PBP B3 is dispensable for growth and cell division. PBP B1 depletion dramatically increased β‐lactam susceptibilities and stimulated spontaneous autolysis but had no effect on peptidoglycan cross‐linkage. Our in vitro virulence assays indicated that the complete set of all HMW PBPs is required for maximal virulence.  相似文献   

12.
Peptidoglycan polymerization complexes contain multimodular penicillin-binding proteins (PBP) of classes A and B that associate a conserved C-terminal transpeptidase module to an N-terminal glycosyltransferase or morphogenesis module, respectively. In Enterococcus faecalis, class B PBP5 mediates intrinsic resistance to the cephalosporin class of beta-lactam antibiotics, such as ceftriaxone. To identify the glycosyltransferase partner(s) of PBP5, combinations of deletions were introduced in all three class A PBP genes of E. faecalis JH2-2 (ponA, pbpF, and pbpZ). Among mutants with single or double deletions, only JH2-2 DeltaponA DeltapbpF was susceptible to ceftriaxone. Ceftriaxone resistance was restored by heterologous expression of pbpF from Enterococcus faecium but not by mgt encoding the monofunctional glycosyltransferase of Staphylococcus aureus. Thus, PBP5 partners essential for peptidoglycan polymerization in the presence of beta-lactams formed a subset of the class A PBPs of E. faecalis, and heterospecific complementation was observed with an ortholog from E. faecium. Site-directed mutagenesis of pbpF confirmed that the catalytic serine residue of the transpeptidase module was not required for resistance. None of the three class A PBP genes was essential for viability, although deletion of the three genes led to an increase in the generation time and to a decrease in peptidoglycan cross-linking. As the E. faecalis chromosome does not contain any additional glycosyltransferase-related genes, these observations indicate that glycan chain polymerization in the triple mutant is performed by a novel type of glycosyltransferase. The latter enzyme was not inhibited by moenomycin, since deletion of the three class A PBP genes led to high-level resistance to this glycosyltransferase inhibitor.  相似文献   

13.
In growing cultures of Escherichia coli, simultaneous inhibition of penicillin-binding proteins 1a and 1b (PBPs 1) by a beta-lactam efficiently induces cell lysis. However, the lytic behavior of cultures initiating growth in the presence of beta-lactams specifically inhibiting PBPs 1 suggested that the triggering of cell lysis was a cell division-related event, at least in the first cell cycle after the resumption of growth (F. Garcia del Portillo, A. G. Pisabarro, E. J. de la Rosa, and M. A. de Pedro, J. Bacteriol. 169:2410-2416, 1987). To investigate whether this apparent correlation would hold true in actively growing cells, we studied the lytic behavior of cultures of E. coli aligned for cell division which were challenged with beta-lactams at different times after alignment. Cell division was aligned either by nutritional shift up or by chromosome replication alignment. Specific inhibition of PBPs 1 with the beta-lactam cefsulodin resulted in a delayed onset of lysis which was coincident in time with the resumption of cell division. The apparent correlation between the initiation of lysis and cell division was abolished when cefsulodin was used in combination with the PBP 2-specific inhibitor mecillinam, leading to the onset of lysis at a constant time after the addition of the beta-lactams. The results presented clearly argue in favor of the hypothesis that the triggering of cell lysis after inhibition of PBPs 1 is a cell division-correlated event dependent on the activity of PBP 2.  相似文献   

14.
In Escherichia coli, cell division is mediated by the concerted action of about 12 proteins that assemble at the division site to presumably form a complex called the divisome. Among these essential division proteins, the multimodular class B penicillin-binding protein 3 (PBP3), which is specifically involved in septal peptidoglycan synthesis, consists of a short intracellular M1-R23 peptide fused to a F24-L39 membrane anchor that is linked via a G40-S70 peptide to an R71-I236 noncatalytic module itself linked to a D237-V577 catalytic penicillin-binding module. On the basis of localization analyses of PBP3 mutants fused to green fluorescent protein by fluorescence microscopy, it appears that the first 56 amino acid residues of PBP3 containing the membrane anchor and the G40-E56 peptide contain the structural determinants required to target the protein to the cell division site and that none of the putative protein interaction sites present in the noncatalytic module are essential for the positioning of the protein to the division site. Based on the effects of increasing production of FtsQ or FtsW on the division of cells expressing PBP3 mutants, it is suggested that these proteins could interact. We postulate that FtsQ could play a role in regulating the assembly of these division proteins at the division site and the activity of the peptidoglycan assembly machineries within the divisome.  相似文献   

15.
16.
Aminoacyl-tRNA synthetase mutants of Escherichia coli are resistant to amdinocillin (mecillinam), a beta-lactam antibiotic which specifically binds penicillin-binding protein 2 (PBP2) and prevents cell wall elongation with concomitant cell death. The leuS(Ts) strain, in which leucyl-tRNA synthetase is temperature sensitive, was resistant to amdinocillin at 37 degrees C because of an increased guanosine 5'-diphosphate 3'-diphosphate (ppGpp) pool resulting from partial induction of the stringent response, but it was sensitive to amdinocillin at 25 degrees C. We constructed a leuS(Ts) delta (rodA-pbpA)::Kmr strain, in which the PBP2 structural gene is deleted. This strain grew as spherical cells at 37 degrees C but was not viable at 25 degrees C. After a shift from 37 to 25 degrees C, the ppGpp pool decreased and cell division was inhibited; the cells slowly carried out a single division, increased considerably in volume, and gradually lost viability. The cell division inhibition was reversible when the ppGpp pool increased at high temperature, but reversion required de novo protein synthesis, possibly of septation proteins. The multicopy plasmid pZAQ, overproducing the septation proteins FtsZ, FtsA, and FtsQ, conferred amdinocillin resistance on a wild-type strain and suppressed the cell division inhibition in the leuS(Ts) delta (rodA-pbpA)::Kmr strain at 25 degrees C. The plasmid pAQ, in which the ftsZ gene is inactivated, did not confer amdinocillin resistance. These results lead us to hypothesize that the nucleotide ppGpp activates ftsZ expression and thus couples cell division to protein synthesis.  相似文献   

17.
The conserved rodA and ftsW genes encode polytopic membrane proteins that are essential for bacterial cell elongation and division, respectively, and each gene is invariably linked with a cognate class B high-molecular-weight penicillin-binding protein (HMW PBP) gene. Filamentous differentiating Streptomyces coelicolor possesses four such gene pairs. Whereas rodA, although not its cognate HMW PBP gene, is essential in these bacteria, mutation of SCO5302 or SCO2607 (sfr) caused no gross changes to growth and septation. In contrast, disruption of either ftsW or the cognate ftsI gene blocked the formation of sporulation septa in aerial hyphae. The inability of spiral polymers of FtsZ to reorganize into rings in aerial hyphae of these mutants indicates an early pivotal role of an FtsW-FtsI complex in cell division. Concerted assembly of the complete divisome was unnecessary for Z-ring stabilization in aerial hyphae as ftsQ mutants were found to be blocked at a later stage in cell division, during septum closure. Complete cross wall formation occurred in vegetative hyphae in all three fts mutants, indicating that the typical bacterial divisome functions specifically during nonessential sporulation septation, providing a unique opportunity to interrogate the function and dependencies of individual components of the divisome in vivo.  相似文献   

18.
The nucleotide sequence of a 3,378-bp DNA fragment of Streptococcus pneumoniae that included the structural gene for penicillin-binding protein (PBP) 1a (ponA), which encodes 719 amino acids, was determined. Homologous DNA fragments from an S. oralis strain were amplified with ponA-specific oligonucleotides. The 2,524-bp S. oralis sequence contained the coding region for the first 636 amino acids of a PBP. The coding sequence differed by 437 nucleotides (27%) and one additional triplet, resulting in 87 amino acid substitutions (14%), from S. pneumoniae PBP 1a. Both PBPs are highly homologous to bifunctional high-M(r) Escherichia coli PBPs 1a and 1b.  相似文献   

19.
Penicillin binding proteins (PBPs) are responsible for synthesizing and modifying the bacterial cell wall, and in Escherichia coli the loss of several nonessential low-molecular-weight PBPs gives rise to abnormalities in cell shape and division. To determine whether these proteins help connect the flagellar basal body to the peptidoglycan wall, we surveyed a set of PBP mutants and found that motility in an agar migration assay was compromised by the simultaneous absence of four enzymes: PBP4, PBP5, PBP7, and AmpH. A wild-type copy of any one of these restored migration, and complementation depended on the integrity of the PBP active-site serine. However, the migration defect was caused by the absence of flagella instead of improper flagellar assembly. Migration was restored if the flhDC genes were overexpressed or if the rcsB or cpxR genes were deleted. Thus, migration was inhibited because the Rcs and Cpx stress response systems were induced in the absence of these four specific PBPs. Furthermore, in this situation Rcs induction depended on the presence of CpxR. The results imply that small changes in peptidoglycan structure are sufficient to activate these stress responses, suggesting that a specific cell wall fragment may be the signal being sensed. The fact that four PBPs must be inactivated may explain why large perturbations to the envelope are required to induce stress responses.  相似文献   

20.
The bacterial peptidoglycan, the main component of the cell wall, is synthesized by the penicillin-binding proteins (PBPs). We used immunofluorescence microscopy to determine the cellular localization of all the high molecular weight PBPs of the human pathogen Streptococcus pneumoniae, for a wild type and for several PBP-deficient strains. Progression through the cell cycle was investigated by the simultaneous labelling of DNA and the FtsZ protein. Our main findings are: (i) the temporal dissociation of cell wall synthesis, inferred by the localization of PBP2x and PBP1a, from the constriction of the FtsZ-ring; (ii) the localization of PBP2b and PBP2a at duplicated equatorial sites indicating the existence of peripheral peptidoglycan synthesis, which implies a similarity between the mechanism of cell division in bacilli and streptococci; (iii) the abnormal localization of some class A PBPs in PBP-defective mutants which may explain the apparent redundancy of these proteins in S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号