首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen-sensing neurons in the central nervous system.   总被引:9,自引:0,他引:9  
This mini-review summarizes the present knowledge regarding central oxygen-chemosensitive sites with special emphasis on their function in regulating changes in cardiovascular and respiratory responses. These oxygen-chemosensitive sites are distributed throughout the brain stem from the thalamus to the medulla and may form an oxygen-chemosensitive network. The ultimate effect on respiratory or sympathetic activity presumably depends on the specific neural projections from each of these brain stem oxygen-sensitive regions as well as on the developmental age of the animal. Little is known regarding the cellular mechanisms involved in the chemotransduction process of the central oxygen sensors. The limited information available suggests some conservation of mechanisms used by other oxygen-sensing systems, e.g., carotid body glomus cells and pulmonary vascular smooth muscle cells. However, major gaps exist in our understanding of the specific ion channels and oxygen sensors required for transducing central hypoxia by these central oxygen-sensitive neurons. Adaptation of these central oxygen-sensitive neurons during chronic or intermittent hypoxia likely contributes to responses in both physiological conditions (ascent to high altitude, hypoxic conditioning) and clinical conditions (heart failure, chronic obstructive pulmonary disease, obstructive sleep apnea syndrome, hypoventilation syndromes). This review underscores the lack of knowledge about central oxygen chemosensors and highlights real opportunities for future research.  相似文献   

2.
Transcranial magnetic stimulation (TMS) is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS) is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS) with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.  相似文献   

3.
DNA content of neurons in rat central nervous system   总被引:3,自引:0,他引:3  
  相似文献   

4.
The ability of the soma of a spinal dorsal horn neuron, a spinal ventral horn neuron (presumably a motoneuron), and a hippocampal pyramidal neuron to generate action potentials was studied using patch-clamp recordings from rat spinal cord slices, the "entire soma isolation" method, and computer simulations. By comparing original recordings from an isolated soma of a dorsal horn neuron with simulated responses, it was shown that computer models can be adequate for the study of somatic excitability. The modeled somata of both spinal neurons were unable to generate action potentials, showing only passive and local responses to current injections. A four- to eightfold increase in the original density of Na(+) channels was necessary to make the modeled somata of both spinal neurons excitable. In contrast to spinal neurons, the modeled soma of the hippocampal pyramidal neuron generated spikes with an overshoot of +9 mV. It is concluded that the somata of spinal neurons cannot generate action potentials and seem to resist their propagation from the axon to dendrites. In contrast, the soma of the hippocampal pyramidal neuron is able to generate spikes. It cannot initiate action potentials in the intact neurons, but it can support their back-propagation from the axon initial segment to dendrites.  相似文献   

5.
6.
Zebrafish is a powerful model system for investigations of vertebrate neural development. The animal has also become an important model for studies of neuronal function. Both in developmental and functional studies, transgenic zebrafish expressing fluorescent proteins in central nervous system neurons have been playing important roles. We review here the methods for producing transgenic zebrafish. Recent advances in transposon- or bacterial artificial chromosome-based transgenesis greatly facilitate the creation of useful lines. We also present our study on alx -positive neurons to reveal how transgenic zebrafish expressing fluorescent proteins in a specific class of neurons can be used to investigate their development and function.  相似文献   

7.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

8.
9.
10.
A model is presented for the subthreshold polarization of a neuron by an applied electric field. It gives insight into how morphological features of a neuron affect its polarizability. The neuronal model consists of one or more extensively branched dendritic trees, a lumped somatic impedance, and a myelinated axon with nodes of Ranvier. The dendritic trees branch according to the 3/2-power rule of Rall, so that each tree has an equivalent cylinder representation. Equations for the membrane potential at the soma and at the nodes of Ranvier, given an arbitrary specified external potential, are derived. The solutions determine the contributions made by the dendritic tree and the axon to the net polarization at the soma. In the case of a spatially constant electric field, both the magnitude and sign of the polarization depend on simple combinations of parameters describing the neuron. One important combination is given by the ratio of internal resistances for longitudinal current spread along the dendritic tree trunk and along the axon. A second is given by the ratio between the DC space constant for the dendritic tree trunk and the distance between nodes of Ranvier in the axon. A third is given by the product of the electric field and the space constant for the trunk of the dendritic tree. When a neuron with a straight axon is subjected to a constant field, the membrane potential decays exponentially with distance from the soma. Thus, the soma seems to be a likely site for action potential initiation when the field is strong enough to elicit suprathreshold polarization. In a simple example, the way in which orientation of the various parts of the neuron affects its polarization is examined. When an axon with a bend is subjected to a spatially constant field, polarization is focused at the bend, and this is another likely site for action potential initiation.  相似文献   

11.
Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine, is presently the most specific marker for identifying cholinergic neurons in the central and peripheral nervous systems. The present article reviews immunohistochemical and in situ hybridization studies on the distribution of neurons expressing ChAT in the human central nervous system. Neurons with both immunoreactivity and in situ hybridization signals of ChAT are observed in the basal forebrain (diagonal band of Broca and nucleus basalis of Meynert), striatum (caudate nucleus, putamen and nucleus accumbens), cerebral cortex, mesopontine tegmental nuclei (pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus and parabigeminal nucleus), cranial motor nuclei and spinal motor neurons. The cerebral cortex displays regional and laminal differences in the distribution of neurons with ChAT. The medial septal nucleus and medial habenular nucleus contain immunoreactive neurons for ChAT, which are devoid of ChAT mRNA signals. This is probably because there is a small number of cholinergic neurons with a low level of ChAT gene expression in these nuclei of human. Possible connections and speculated functions of these neurons are briefly summarized.  相似文献   

12.
13.
14.
J1/tenascin is a repulsive substrate for central nervous system neurons.   总被引:7,自引:0,他引:7  
A Faissner  J Kruse 《Neuron》1990,5(5):627-637
J1/tenascin mediates neuron-astrocyte interactions in vitro and is transiently expressed during CNS development in vivo. It is detectable in discrete zones, for example on astrocytes delineating "barrels" in the rodent somatosensory cortex. To investigate the effects of J1/tenascin on neural cell behavior in vitro, we have generated two monoclonal antibodies specific for protein epitopes on J1/tenascin and used them for immunoaffinity isolation of the molecule from postnatal mouse brain. The purified ECM molecule alone did not support attachment and growth of cerebral astrocytes or E14 mesencephalic, E18 hippocampal, and P6 cerebellar neurons. When various ECM constituents were adsorbed to polyornithine-conditioned glass, a favorable substrate for neural cells, the neurons avoided J1/tenascin-, but not laminin- or fibronectin-coated surfaces, while they grew on J1/tenascin-free, polyornithine-containing areas of the coverslip. In contrast, astrocytes formed uniform monolayers on all of these substrates. We conclude that J1/tenascin could serve to define repulsive territories for CNS neurons from different stages of neural development.  相似文献   

15.
The peptide transmitter N-acetylaspartylglutamate (NAAG) is present in millimolar concentrations in mammalian spinal cord. Data from the rat peripheral nervous system suggest that this peptide is synthesized enzymatically, a process that would be unique for mammalian neuropeptides. To test this hypothesis in the mammalian CNS, rat spinal cords were acutely isolated and used to study the incorporation of radiolabeled amino acids into NAAG. Consistent with the action of a NAAG synthetase, inhibition of protein synthesis did not affect radiolabel incorporation into NAAG. Depolarization of spinal cords stimulated incorporation of radiolabel. Biosynthesis of NAAG by cortical astrocytes in cell culture was demonstrated by tracing incorporation of [3H]-glutamate by astrocytes. In the first test of the hypothesis that NAA is an immediate precursor in NAAG biosynthesis, [3H]-NAA was incorporated into NAAG by isolated spinal cords and by cell cultures of cortical astrocytes. Data from cerebellar neurons and glia in primary culture confirmed the predominance of neuronal synthesis and glial uptake of NAA, leading to the hypothesis that while neurons synthesize NAA for NAAG biosynthesis, glia may take it up from the extracellular space. However, cortical astrocytes in serum-free low-density cell culture incorporated [3H]-aspartate into NAAG, a result indicating that under some conditions these cells may also synthesize NAA. Pre-incubation of isolated spinal cords and cultures of rat cortical astrocytes with unlabeled NAA increased [3H]-glutamate incorporation into NAAG. In contrast, [3H]-glutamine incorporation in spinal cord was not stimulated by unlabeled NAA. These results are consistent with the glutamate-glutamine cycle greatly favoring uptake of glutamine into neurons and glutamate by glia and suggest that NAA availability may be rate-limiting in the synthesis of NAAG by glia under some conditions.  相似文献   

16.
17.
Summary With the help of the highly specific and sensitive fluorescence method of Falck and Hillarp together with the histochemical and pharmacological criteria for the specificity of the fluorescence reaction convincing evidence has been obtained that the fine, varicose nerve fibres observed in a vast number of regions in the mammalian central nervous system (mouse, hamster, rat, guineapig, rabbit, cat), which exhibit a green or yellow fluorescence, contain primary catecholamines and 5-HT respectively. Strong support has been given for the view that CA fibres showing a rapid recovery after administration of -MMT contain DA, while those showing a slow recovery contain NA.There is little doubt that the monoamine-containing fibres in the brain represent the terminal ramifications of axons belonging to specific monoamine neurons and that they are true synaptic terminals. They seem to make their contacts via the varicosities which have extremely high concentrations of amines and in all probability represent the presynaptic structures, specialized for synthesis, storage and release of the amines. The central monoamine terminals thus have the same characteristic appearance as the adrenergic synaptic terminals in the peripheral nervous system.All the data strongly support the view that the specific central neurons giving rise to the terminals are monoaminergic, i.e. function by releasing their amines from the synaptic terminals. Consequently, DA, NA and 5-HT seem to be central neurotransmitters.Not only the median eminence but also the nuc. caudatus putamen, tuberculum olfactorium, nuc. accumbens and the small circumscribed areas medial to nuc. accumbens contain very fine (partly sublightmicroscopical) CA terminals. These areas react to treatment with reserpine, nialamide-dopa and -MMT in the same way and since the nuc. caudatus putamen and tuberculum olfactorium are known to have a high DA content it seems likely that abundant DA terminals are accumulated in these special areas.The Following Abbreviations are Used CA Catecholamine - DA Dopamine - dopa 3.4-Dihydroxy-phenylalanin - NA Noradrenaline - A Adrenaline - 5-HT 5-Hydroxytryptamine - -MMT -Methyl-meta-tyrosine - MAO Monoamine oxidase For generous supplies of drugs the author is indebted to the following companies: Swedish Ciba, Stockholm, Sweden (reserpine); Swedish Pfizer, Stockholm, Sweden (nialamide); Abbott Research Laboratories, Chicago, USA. (MO 911). This study has been supported by a Public Health Service Grant (NB 02854-04) from the National Institute of Neurological Diseases and Blindness and by grants from the Knut and Alice Wallenberg Foundation, and the Swedish Medical Research Council.  相似文献   

18.
Apolipoprotein D (apo D), a lipocalin transporter of small hydrophobic molecules could play an important role in several neurodegenerative diseases. However, its role in those diseases remains unclear. There has been reported increments of apo D in relation with different neuropathologic diseases. Recently, we reported the absence of apo D in neurons of substantia nigra which can contribute to the lability of neurons to oxidative damage. In order to determine the relationship between apo D expression and neuronal death, we studied the expression of apo D in various regions of human brains from patients without any neurological or psychological disorders, in relation with the neuronal damage revealed by Fluoro-Jade B staining. The absence of expression for apo D in injured neurons and the negative staining for Fluoro-Jade B of neurons that express apo D was observed in all sections studied. These findings are in accordance with the role possibly played by apo D in the neuroprotection of the nervous system.  相似文献   

19.
Summary Surface wettability is an excellent indicator of the ability of cells to adhere to a culture substrate. We have determined that brief exposure of a hydrophobic culture surface to a propane flame may increase wettability more than 1200% via the deposition of ionic combustion products. Previously nonadherent mouse spinal cord cells will adhere to and differentiate morphologically on a hydrophobic surface after flaming. Central nervous system cells remain adhered to flamed surfaces for periods of 2 mo. or longer and demonstrate spontaneous electrical activity during that time. Secondary modification of a flamed surface with polylysine further enhances the strength of single cell adhesion, thereby retarding mobility and promoting neurite extension. Flaming also enhances the wettability of common culture materials such as glass and polystyrene, as well as metal. Flaming of hydrophobic substrates through masks permits creation of discrete adhesion islands and patterns which may be used for a variety of investigations requiring maintenance of different cell types in separate regions of a culture surface. This research was supported by U.S. Public Health Service grant 2 RO1 NS 15167.  相似文献   

20.
We document the presence of subpopulations of neurons within the rat central nervous system that are labelled with a new Congo red staining technique. These neurons (CR neurons) show shrunken somata, and smaller and darker nuclei than Congo red-negative cells (non-CR cells). With the Bielschowsky and the cresyl violet Nissl staining methods, two comparable subpopulations of cells can be distinguished by the same morphometrical criteria as those used for CR and non-CR cells. CR neurons are located preferentially in some brain regions while in others they are virtually absent. Their distribution and proportion varied greatly from animal to animal and after particular treatments. Injections of water that damaged the hippocampal dentate gyrus, cortical lesions or eye enucleation decreased the number of CR-cells in the CA1 subfield, reflected in a shift from the CR-staining subclass to the non-CR subclass. Treatment with 200 mg/kg of CDP-choline also significantly reduced the number of CR cells observed in CA1. In the red nucleus, CR neurons showed a characteristic distribution of β-amyloid precursor protein (APP) immunoreactivity. The population of dendrites immunolabelled for microtubule-associated protein 2 was markedly decreased in the areas of the hippocampus with high numbers of CR cells. Therefore, it is proposed that neurons labelled with the present Congo red technique might be in a reversible degenerative state or represent a particular physiological state in some areas of the central nervous system. Received: 12 December 1997 / Accepted: 1 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号