首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatty acid compositions of half-seeds and whole seeds of the temperature-dependent high-stearic-acid sunflower (Helianthus annuus L.) mutant CAS-14 were unexpectedly different. We found that there is a longitudinal gradient starting from the embryo up to the end of the cotyledon. The stearic acid content varied from 9.7 to 34.6% in seeds produced in a growth chamber (39/24 degrees C; day/night), and from 14.0 to 34.4% in seeds produced in the field during the summer season (35-40 degrees C in daylight and 20-25 degrees C at night). The gradient occurs throughout seed formation, and is due to a spatial and non-temporal regulation of stearic acid desaturation. A similar temperature-regulated behaviour, but for oleic and linoleic acid contents, was found in normal sunflower seeds. Since the deposition of oil bodies was homogeneous during seed formation, seeds showed the gradient throughout their development. This non-homogeneous distribution must be due to differences in the enzymatic pathway of de-novo fatty acid desaturation along the seed, resembling a morphogen gradient. Other high-stearic-acid mutant lines, such as CAS-3, did not show any gradient. This is the first time that a gradient and an inheritable maternal control of the fatty acid composition have been found in oilseeds.  相似文献   

2.
Ovules of sunflower tubular florets were observed histologically by serial sectioning and clearing to study the correlation between flower morphology and developmental stage. On the basis of these data, florets with visible stigma and receptive "curling" surfaces were chosen for embryo sac (ES) isolation. In such florets, ~20% of the ovules were unfertilized; fertilized zygote-stage ES (~75% of ovules) or ES containing two-celled proembryo occurred in the remaining ovules. ES were dissected manually using needles under a stereomicroscope or were treated with enzymes for 4–5 h after manual isolation. The viability of ES isolated without enzymes was more than 90% as assessed by fluorescein diacetate staining, and decreased to ~3% after 72 h of culture. The use of enzymes during isolation resulted in diminished ES viability, suggesting that removal of the protective layers of ovular cells may be part of the problem. Another factor affecting ES viability is medium osmolality. Living ES were then cultured in vitro. On liquid medium containing 9% sucrose, globular embryos developed in ~10% of zygote-stage ES, but further growth of the embryos was abnormal and callus was produced. Transfer of embryo-derived callus to solid Murashige-Skoog medium supplemented with 1-naphtaleneacetic acid and kinetin resulted in organogenesis. When ES were co-cultured with androgenetic microspores and microspore-derived embryos of Brassica napus, ~11% of the ES showed growth and development. Embryological study of the cultured ES revealed outgrowth of endothelium.  相似文献   

3.
Single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) are increasingly used for cultivar identification, construction of genetic maps, genetic diversity assessment, association mapping and marker-assisted breeding. Although there are several highly sensitive methods for the detection of polymorphisms, most of them are often beyond the budget of medium-throughput academic laboratories or seed companies. Heteroduplex analysis by enzymatic cleavage (CEL1CH) or denaturing high-performance liquid chromatography (dHPLC) has been successfully used to examine genetic variation in several plant and animal species. In this work, we assess and compare the performance of both methods in sunflower by genotyping SNPs from a set of 24 selected polymorphic candidate genes. The CEL1CH method allowed us to accurately detect allele differences in 10 out of 24 regions using an in-house prepared CEL1 enzyme (celery single strand endonuclease 1, Apium graveolens L.). Similarly, a total of 11 regions were successfully optimized for dHPLC analysis. As a scaling-up approach, both strategies were tested to genotype either 42 SNPs/indels in 22 sunflower accessions from the local germplasm bank or 33 SNPs/indels in 90 recombinant inbred lines (RILs) for genetic mapping purposes. Summarizing, a total of 601 genotypes were efficiently analyzed either with CEL1CH (110) or dHPCL (491). In conclusion, CEL1CH and dHPLC proved to be robust, complementary methods, allowing medium-scale laboratories to scale up the number of both SNPs and individuals to be included in genetic studies and targeted germplasm diversity characterization (EcoTILLING).  相似文献   

4.
Commercial hybrids of cultivated sunflower (Helianthus annuus L.) are obtained by crossing a cytoplasmic male sterile line (A-line) with a restorer pollinator (R-line). The incorporation of a recessive branching trait to extend the pollination period of R-lines during hybrid seed production is laborious and time-consuming. By using target region polymorphism (TRAP) and bulked segregant analysis (BSA), we identified 15 TRAP markers linked to the b(1) (branching) locus in a population of 229 F(2) plants derived from a cross between nonbranched (HA 234) and branched (RHA 271) lines. TBr4-720 and TBr8-555 markers were linked to the b(1) gene in the coupling phase at 0.5 cM (0.004 recombination frequency). The Tbr20-297 and Tbr20-494 markers flanked the b(1) locus in the repulsion phase at genetic distances of 7.5 and 2.5 cM, respectively. Tbr19-395, also in the repulsion phase, mapped at 3.8 cM from the b(1) locus and on the opposite side of the marker Tbr20-297. The 8A1 and 15B3 restriction fragment length polymorphic (RFLP) markers of linkage group (LG) 16 of the RHA 271 x HA 234 cultivated sunflower map anchored the b(1) LG onto the RFLP map. Polymerase chain reaction (PCR)-based markers tightly linked to the recessive b(1) gene have been developed. Their identification and the incorporation of the LG containing the b(1) locus onto an RFLP map will be useful for marker-assisted selection (MAS) in breeding programs and provide the bases for map-based cloning of this gene.  相似文献   

5.

Key message

A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome.

Abstract

Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC1F2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC1F2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC1F2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC2F3 progeny provides a novel gene for use in confection sunflower breeding programs.
  相似文献   

6.
7.
Action potentials (APs) in plants are involved in fast leaf or trap closure as well as elongation, respiration, photosynthesis, and fertilization regulation. Here, spontaneous APs (SAPs) in relation to endogenous stem movement named circumnutation (CN) have been investigated in Helianthus annuus in different light conditions in freely circumnutating and immobilized plants. Extracellular electrical measurements and time-lapse photography were carried out simultaneously. The parameters of CN (trajectory length, period, and direction) and the number and transmission direction of SAPs were analysed. In continuous light (25–40 μmol m?2 s?1), all plants circumnutating vigorously in a regular elliptical manner and no SAPs were observed. In light/dark conditions, the plants circumnutated in a daily pattern, most SAPs were observed in the dark and freely circumnutated sunflowers had two times more SAPs (10 SAPs/24 h/plant) than the immobilized plants (5 SAPs/24 h/plant). In continuous very low light (5 μmol m?2 s?1), the plants circumnutated weakly and irregularly and SAPs appeared without the circadian pattern. 3–5 SAPs/24/plant occurred in the freely circumnutating and immobilized plants. In light/dark and continuous very low light conditions, an ultradian rhythm of SAPs was observed and the mean spacing between SAPs was approx. 121–271 min in the freely circumnutating and immobilized plants. Under all light conditions, more SAPs were transmitted basipetally than acropetally. One-hour lasting series of 3–4 min spaced SAPs locally propagated were observed as well in very low light. Basipetal and acropetal SAPs passing along the stem motor region accompany irregularity, changes in the CN trajectory direction, and stem torsion. These results demonstrate that APs and CN changes play a role in plant adaptation to light conditions and that there is an ultradian rhythm of SAPs beside ultradian CN rhythm.  相似文献   

8.
The inter-retrotransposon amplified polymorphism (IRAP) protocol was applied for the first time within the genus Helianthus to assess intraspecific variability based on retrotransposon sequences among 36 wild accessions and 26 cultivars of Helianthus annuus L., and interspecific variability among 39 species of Helianthus. Two groups of LTRs, one belonging to a Copia-like retroelement and the other to a putative retrotransposon of unknown nature (SURE) have been isolated, sequenced and primers were designed to obtain IRAP fingerprints. The number of polymorphic bands in H. annuus wild accessions is as high as in Helianthus species. If we assume that a polymorphic band can be related to a retrotransposon insertion, this result suggests that retrotransposon activity continued after Helianthus speciation. Calculation of similarity indices from binary matrices (Shannon’s and Jaccard’s indices) show that variability is reduced among domesticated H. annuus. On the contrary, similarity indices among Helianthus species were as large as those observed among wild H. annuus accessions, probably related to their scattered geographic distribution. Principal component analysis of IRAP fingerprints allows the distinction between perennial and annual Helianthus species especially when the SURE element is concerned.  相似文献   

9.
The effect of hyberbaric oxygenation on mutagenicity of nitrosomethylurea (NMU) was examined. It was shown that in the regimes studied, hyperbaric oxygenation enhances the NMU mutagenic effect on the plastid genetic material of sunflower. Possible mechanisms of the increase of NMU-induced mutagenesis by hyperbaric oxygenation are discussed.Translated from Genetika, Vol. 41, No. 1, 2005, pp. 63–70.Original Russian Text Copyright © 2005 by Usatov, Mashkina, Guskov.  相似文献   

10.
11.
The substrate specificity of acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) determines the fatty acids available for the biosynthesis of storage and membrane lipids in seeds. In order to determine the mechanisms involved in the biosynthesis of fatty acids in sunflower seeds (Helianthus annuus L.), we isolated, cloned and sequenced a cDNA clone of acyl-ACP thioesterase from developing sunflower seeds, HaFatA1. Through the heterologous expression of HaFatA1 in Escherichia coli we have purified and characterized this enzyme, showing that sunflower HaFatA1 cDNA encodes a functional thioesterase with preference for monounsaturated acyl-ACPs. The HaFatA1 thioesterase was most efficient (kcat/Km) in catalyzing oleoyl-ACP, both in vivo and in vitro. By comparing this sequence with those obtained from public databases, we constructed a phylogenetic tree that included FatA and FatB thioesterases, as well as related prokaryotic proteins. The phylogenetic relationships support the endosymbiotic theory of the origin of eukaryotic cells and the suggestion that eubacteria from the -subdivision were the guest cells in the symbiosis with archaea. These prokaryotic proteins are more homologous to plant FatB, suggesting that the ancient thioesterases were more similar to FatB. Finally, using the available structure prediction methods, a 3D model of plant acyl-ACP thioesterases is proposed that reflects the combined data from direct mutagenesis and chimera studies. In addition, the model was tested by mutating the residues proposed to interact with the ACP protein in the FatA thioesterase by site-directed mutagenesis. The results indicate that this region is involved in the stabilization of the substrate at the active site.  相似文献   

12.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

13.
14.
15.
Up to now a single cytoplasmic male sterility (CMS) source, PET1, is used worldwide for hybrid breeding in sunflower. Introgression of the restorer gene Rf1, responsible for fertility restoration, into new breeding material requires tightly linked markers to perform an efficient marker-assisted selection. A survey of 520 decamer primers by bulked segregant analyses identified five RAPD markers linked to the restorer gene Rf1. In a F(2) population of 183 individuals one of the RAPD markers, OPK13_454, mapped 0.8 cM from Rf1, followed by OPY10_740 with 2 cM. Bulked segregant analyses using 48 AFLP primer combinations identified 17 polymorphisms, which could be mapped in the same linkage group as Rf1. E33M61_136, and E41M48_113 were mapped 0.3 cM and 1.6 cM from the gene, respectively. Conversion of E41M48_113 into a sequence-specific marker resulted in a monomorphic pattern. However, two of the RAPD markers, OPK13_454 and OPY10_740, were successfully converted into SCAR markers, HRG01 and HRG02, which are now available for marker-assisted selection. To investigate the utility of these SCAR markers in other cross-combinations they were tested in a set of 20 lines. Comparison of the patterns of 11 restorer and nine maintainer lines of PET1 demonstrated that the markers OPK13_454/HRG01 and HRG02 were absent in all maintainer lines but present in all restorer lines, apart from the high oleic line RHA348 and the dwarf line Gio55. In addition, restorer lines developed from the interspecific hybrids Helianthus annuus x Helianthus mollis and H. annuus x Helianthus rigidus gave the same characteristic amplification products.  相似文献   

16.
17.
Agrobacterium -mediated transformation of shoot apices of sunflower (Helianthus annuus L.) was evaluated following wounding by cell-wall-digesting enzymes and sonication. The frequency of explants with regenerated shoots expressing GUS (beta-glucuronidase) or GFP (green fluorescent protein) increased following treatment with the macerating enzymes cellulase Onozuka R-10 and pectinase Boerozym M5, whereas treatment with macerozyme R-10 had a negative effect. When a combination of cellulase (0.1%) and pectinase (0.05%) was used, the rate of explants with uniformly GUS-positive shoots increased at least twofold. The transient expression of reporter genes was also enhanced using sonication (50 MHz; 2, 4 and 6 s), but stable expression in regenerated shoots following 4 weeks of selection did not increase with this treatment. Enzyme treatment alone (0.1% cellulase and 0.05% pectinase) was superior to a combined treatment of sonication and enzymes with respect to stable transformation. Polymerase chain reaction analyses of shoots recovered by grafting from transformation experiments using GFP as the reporter gene demonstrated the stable integration of the transgene. Regenerated plants were fertile and seeds could be harvested.  相似文献   

18.
Salt-induced changes in growth, photosynthetic pigments, various gas exchange characteristics, relative membrane permeability (RMP), relative water content (RWC) and ion accumulation were examined in a greenhouse experiment on eight sunflower (Helianthus annuus L.) cultivars. Sunflower cultivars, namely Hysun-33, Hysun-38, M-3260, S-278, Alstar-Rm, Nstt-160, Mehran-II and Brocar were subjected to non-stress (0 mM NaCl) or salt stress (150 mM NaCl) in sand culture. On the basis of percent reduction in shoot biomass, cvs. Hysun-38 and Nstt-160 were found to be salt tolerant, cvs. Hysun-33, M-3260, S-278 and Mehran-II moderately tolerant and Alstar-Rm and Brocar salt sensitive. Salt stress markedly reduced growth, different gas exchange characteristics such as photosynthetic rate (A), water-use efficiency (WUE) calculated as A/E, transpiration rate (E), internal CO2 concentration (C i) and stomatal conductance (g s) in all cultivars. The effect of 150 mM NaCl stress was non-significant on chlorophyll a and b contents, chlorophyll a/b ratio, RWC, RMP and leaf and root Cl, K+ and P contents; however, salt stress markedly enhanced C i /C a ratio, free proline content and leaf and root Na+ concentrations in all sunflower cultivars. Of all cultivars, cv. Hysun-38 was higher in gas exchange characteristics, RWC and proline contents as compared with the other cultivars. Overall, none of the earlier-mentioned physiological attributes except leaf K+/Na+ ratio was found to be effective in discriminating the eight sunflower cultivars as the response of each cultivar to salt stress appraised using various physiological attributes was cultivar-specific.  相似文献   

19.
The effect of abscisic acid (ABA) treatment on growth pigments and antioxidant defense system were investigated in seedlings of Helianthus annuus (cvs. Nantio F1 and Özdemirbey) subjected to drought and waterlogging stress. In addition, seedlings were sprayed with 10 M ABA three times every other day. Relative growth rate (RGR) was significantly reduced in both genotypes under drought stress, however, this growth inhibition was less in ABA-treated plants. Total chlorophyll content increased by drought stress in both genotypes. Ascorbate was not influenced by drought, while α-tocopherol increased in cv. Nantio F1. Ascorbate and α-tocopherol increased with drought stress in cv. Özdemirbey. ABA treatment decreased ascorbate and β-carotene contents while it increased α-tocopherol and xanthophylls contents under drought stress. The activity of superoxide dismutase (SOD) in both genotypes increased under drought stress-ABA combinations. Catalase (CAT) activity decreased under drought stress and drought-ABA combinations while it increased under waterlogging stress. Glutathione reductase (GR) activity decreased under drought stress but recovered with ABA treatment. The results suggested that ABA treatments have different effects on the components of antioxidant defense system in H. annuus genotypes and ABA may contribute drought-induced oxidative stress tolerance but not effects under waterlogging stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号