首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe IDDM (insulin-dependent diabetes mellitus) was produced in the musk shrew (Suncus murimus, Insectivora) by a high dose (a single intraperitoneal injection of 100 mg/kg Body Weight) of streptozotocin (STZ) injection. All shrews that were administered a high dose of STZ exhibited hyperglycemia (449 +/- 16 mg/dl vs 73 +/- 4 mg/dl in controls) and hypoinsulinemia(0.25 +/- 0.07 ng/ml vs 10.96 +/- 1.97 ng/ml in controls) with ketosuria 10 days after injection. Their livers were enlarged and exhibited ayellowish-brown color with marked triglyceride (TG) accumulation (63.25 +/- 7.10 mg/g Liver vs 2.11 +/- 0.19 mg/g Liver in controls). It is probable that the increased influx of fatty acids into the liver induced by hypoinsulinemia and the low capacity of excretion of lipoprotein secretion from liver in the musk shrew resulting from a deficiency of apolipoprotein B synthesis play important roles in fatty liver formation. Hyperlipidemia was another feature in shrews with severe IDDM. The blood TG level was especially high in these shrews (899 +/- 178 mg/dl vs 23 +/- 5 mg/dl in controls). These results indicate that the IDDM shrew, induced by high doses of STZ, is a unique model characterized by fatty liver and hyperlipidemia and may be useful for studying lipid metabolism of IDDM.  相似文献   

2.
Nonrodent models of diabetes are needed for practical and physiological reasons. Induction of mild insulin-deficient diabetes was investigated in male G?ttingen minipigs by use of streptozotocin (STZ) alone (75, 100, and 125 mg/kg) or 125 mg/kg combined with pretreatment with nicotinamide (NIA; 0, 20, 67, 100, 150, and 230 mg/kg). Use of NIA resulted in a less steep slope of the regression line between fasting plasma glucose and changing doses compared with STZ [-7.0 +/- 1.4 vs. 29.7 +/- 7.0 mM. mg(-1). kg(-1), P < 0.0001]. Intermediate NIA doses induced moderate changes of glucose tolerance [glucose area under the curve increased from 940 +/- 175 to 1,598 +/- 462 mM. min, P < 0.001 (100 mg/kg) and from 890 +/- 109 to 1,669 +/- 691 mM. min, P = 0.003 (67 mg/kg)] with reduced insulin secretion [1,248 +/- 602 pM. min after 16 days and 1,566 +/- 190 pM. min after 60 days vs. 3,251 +/- 804 pM. min in normal animals (P < 0.001)] and beta-cell mass [5.5 +/- 1.4 mg/kg after 27 days and 7.9 +/- 4.1 mg/kg after 60 days vs. 17.7 +/- 4.7 mg/kg in normal animals (P = 0.009)]. The combination of NIA and STZ provided a model characterized by fasting and especially postprandial hyperglycemia and reduced, but maintained, insulin secretion and beta-cell mass. This model holds promise as an important tool for studying the pathophysiology of diabetes and development of new pharmacological agents for treatment of the disease.  相似文献   

3.
To develop a rat model of type 2 diabetic mellitus that simulated the common manifestation of the metabolic abnormalities and resembled the natural history of a certain type 2 diabetes in human population, male Sprague-Dawley rats (4 months old) were injected with low-dose (15 mg/kg) STZ after high fat diet (30% of calories as fat) for two months (L-STZ/2HF). The functional and histochemical changes in the pancreatic islets were examined. Insulin-glucose tolerance test, islet immunohistochemistry and other corresponding tests were performed and the data in L-STZ/2HF group were compared with that of other groups, such as the model of type 1 diabetes (given 50 mg/kg STZ) and the model of obesity (high fat diet). The body weight of rats in the group of rats given 15 mg/kg STZ after high fat diet for two months increased significantly more than that of rats in the group of rats given 50 mg/kg STZ (the model of type 1 diabetes) (595 +/- 33 g vs. 352 +/- 32 g, p<0.05). Fast blood glucose levels for L-STZ/2HF group were 16.92 +/- 1.68 mmol/l, versus 5.17 +/- 0.55 mmol/l in normal control and 5.59 +/- 0.61 mmol/l in rats given high fat diet only. Corresponding values for fast serum insulin were 0.66 +/- 0.15 ng/ml, 0.52 +/- 0.13 ng/ml, 0.29 +/- 0.11 ng/ml, respectively. Rats of type 2 diabetes (L-STZ/2HF) had elevated levels of triglyceride (TG, 3.82 +/- 0.88 mmol/l), and cholesterol(Ch, 2.38 +/- 0.55 mmol/l) compared with control (0.95 +/- 0.15 mmol/l and 1.31 +/- 0.3 mmol/l, respectively) (p<0.05). The islet morphology as examined by immunocytochemistry using insulin antibodies in the L-STZ/2HF group was affected and quantitative analysis showed the islet insulin content was higher than that of rats with type 1 diabetes (P<0.05). We concluded that the new rat model of type 2 diabetes established with conjunctive treatment of low dose of STZ and high fat diet was characterized by hyperglycemia and light impaired insulin secretion function accompanied by insulin resistance, which resembles the clinical manifestation of type 2 diabetes. Such a model, easily attainable and inexpensive, would help further elucidation of the underlying mechanisms of diabetes and its complications.  相似文献   

4.
This study examined the relationship between islet neurohormonal characteristics and the defective glucose-stimulated insulin secretion in genetic type 2 diabetic Chinese hamsters. Two different sublines were studied: diabetes-prone CHIG hamsters and control CHIA hamsters. The CHIG hamsters were divided into three subgroups, depending on severity of hyperglycemia. Compared to normoglycemic CHIG hamsters and control CHIA hamsters, severely hyperglycemic CHIG hamsters (glucose > 15 mmol/l) showed marked glucose intolerance during i.p. glucose tolerance test and 75% impairment of glucose-stimulated insulin secretion from isolated islets. Mildly hyperglycemic CHIG animals (glucose 7.2-15 mmol/l) showed only moderate glucose intolerance and a 60% impairment of glucose-stimulated insulin secretion from the islets. Immunostaining for neuropeptide Y and tyrosine hydroxylase (markers for adrenergic nerves) and for vasoactive intestinal peptide (marker for cholinergic nerves) revealed significant reduction in immunostaining of islets in the severely but not in the mildly hyperglycemic animals, compared to control CHIA hamsters. The study therefore provides evidence that in this model of type 2 diabetes in Chinese hamsters, severe hyperglycemia is accompanied not only by marked glucose intolerance and islet dysfunction but also by reduced islet innervation. This suggests that islet neuronal alterations may contribute to islet dysfunction in severe but not in mild diabetes.  相似文献   

5.
Recent investigations suggest that cytotoxic cytokines such as tumor necrosis factor (TNF)alpha and interleukin (IL)-1beta or free radicals play an essential role in destruction of pancreatic beta cells in Type 1 diabetes and that, therefore, anti-oxidant or anti-TNF alpha and IL-1beta therapy could prevent the development of Type I diabetes. Troglitazone belongs to a novel class of antidiabetic agent possessing the ability to enhance insulin action provably through activating PPAR gamma and to scavenge free radicals. In the present study, we examined whether troglitazone can prevent the development of Type 1 diabetes in multiple, low-dose streptozotocin (MLDSTZ)-injected mice. In addition, effects of troglitazone on cytokine-induced pancreatic beta cell damage were examined in vitro. Type 1 diabetes was induced by MLDSTZ injection to DBA/2 mice (40 mg/kg/day for 5 days). Troglitazone was administered as a 0.2% food admixture (240 mg/kg/day) for 4 weeks from the start of or immediately after STZ injection. MLDSTZ injection elevated plasma glucose to 615 +/- 8 mg/dl 4 weeks after final STZ injection and was accompanied by infiltration of leukocytes to pancreatic islets (insulitis). Troglitazone treatment with MLDSTZ injection prevented hyperglycemia (230 +/- 30 mg/dl) and, suppressed insulitis and TNF alpha production from intraperitoneal exudate cells. TNF alpha (10 pg/ml) and IL-1beta (1 pg/ml) addition to hamster insulinoma cell line HIT-T15 for 7 days in vitro decreased insulin secretion and cell viability. Simultaneous troglitazone addition (0.03 to approximately 3 microM) significantly improved cytokine-induced decrease in insulin secretion and in cell viability. These findings suggest that troglitazone prevents the development of Type 1 diabetes in the MLDSTZ model by suppressing insulitis associated with decreasing TNF alpha production from intraperitoneal exudate cells and the subsequent TNF alpha and IL-1beta-induced beta cell damage.  相似文献   

6.
Betacellulin (BTC) induces differentiation of pancreatic beta-cells and promotes regeneration of beta-cells in experimental diabetes. The present study was conducted to determine if BTC improved glucose metabolism in severe diabetes induced by a high dose of streptozotocin (STZ) in mice. Male ICR mice were injected with 200 microg/g ip STZ, and various doses of BTC were administered daily for 14 days. The plasma glucose concentration increased to a level of >500 mg/dl in STZ-injected mice. BTC (0.2 microg/g) significantly reduced the plasma glucose concentration, but a higher concentration was ineffective. The effect of BTC was marked by day 4 but became smaller on day 6 or later. The plasma insulin concentration and the insulin content were significantly higher in mice treated with 0.1 and 0.2 microg/g BTC. BTC treatment significantly increased the number of beta-cells in each islet as well as the number of insulin-positive islets. Within islets, the numbers of 5-bromo-2-deoxyuridine/somatostatin-positive cells and pancreatic duodenal homeobox-1/somatostatin-positive cells were significantly increased by BTC. These results indicate that BTC improved hyperglycemia induced by a high dose of STZ by promoting neoformation of beta-cells, mainly from somatostatin-positive islet cells.  相似文献   

7.
Despite the frequent use of in vitro tissue culture before islet cryopreservation, no study has evaluated the ability of this procedure to improve the recovery or in vivo function of frozen-thawed islets. To evaluate this, quantities of 2500 Wistar-Furth (WF) rat islets were allocated to each of four groups (n = 8 each): group 1, freshly isolated; group 2, 48 hr in vitro culture; group 3, cryopreservation; group 4, cryopreservation after 48 hr in culture. Islets were frozen slowly at 0.25 degrees C/min and thawed rapidly at 200 degrees C/min. The number of islets recovered after culture or cryopreservation was determined and viability was assessed by measuring weekly indices of plasma glucose (PG), urine glucose (UG), urine volume (UV), and weight after implantation into the portal vein of streptozotocin-diabetic WF recipients. Islet recovery was 97% after culture, 95% after cryopreservation, and 94% after culture-then cryopreservation. After implantation of group 1 and 2 islets, PG was less than 150 mg/dl at 1 week and UG and UV were normal by 1-2 weeks. Group 3 islets restored normoglycemia at 3 weeks and other indices of diabetes were reversed by 4 weeks; group 4 islets restored normoglycemia at 4 weeks and indices returned to basal after 4 weeks. At intravenous glucose tolerance testing (ivGTT), the K values (mean decline in glucose, %/min, +/- SE) were group 1, 1.6 +/- 0.3; group 2, 1.5 +/- 0.3; group 3, 0.6 +/- 0.1; and group 4, 0.7 +/- 0.2. These data show that cryopreservation preserves freshly isolated or cultured islets that reverse the indices of diabetes after implantation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
This study tested whether leptin restores sympathetic-vagal balance, heart rate (HR) variability, and cardiac baroreflex sensitivity (BRS) in streptozotocin (STZ)-induced diabetes. Sprague-Dawley rats were instrumented with arterial and venous catheters, and a cannula was placed in the lateral ventricle for intracerebroventricular (ICV) leptin infusion. Blood pressure (BP) and HR were monitored by telemetry. BRS and HR variability were estimated by linear regression between HR and BP responses to phenylephrine or sodium nitroprusside and autoregressive spectral analysis. Measurements were made during control period, 7 days after induction of diabetes, and 7 days after ICV leptin infusion. STZ diabetes was associated with hyperglycemia (422 +/- 17 mg/dl) and bradycardia (-79 +/- 4 beats/min). Leptin decreased glucose levels (165 +/- 16 mg/dl) and raised HR to control values (303 +/- 10 to 389 +/- 10 beats/min). Intrinsic HR (IHR) and chronotropic responses to a full-blocking dose of propranolol and atropine were reduced during diabetes (260 +/- 7 vs. 316 +/- 6, -19 +/- 2 vs. -43 +/- 6, and 39 +/- 3 vs. 68 +/- 8 beats/min), and leptin treatment restored these variables to normal (300 +/- 7, -68 +/- 10, and 71 +/- 8 beats/min). Leptin normalized BRS (bradycardia, -2.6 +/- 0.3, -1.7 +/- 0.2, and -3.0 +/- 0.5; and tachycardia, -3.2 +/- 0.4, -1.9 +/- 0.3, and -3.4 +/- 0.3 beats.min(-1).mmHg(-1) for control, diabetes, and leptin) and HR variability (23 +/- 4 to 11 +/- 1.5 ms2). Chronic glucose infusion to maintain hyperglycemia during leptin infusion did not alter the effect of leptin on IHR but abolished the improved BRS. These results show rapid impairment of autonomic nervous system control of HR after the induction of diabetes and that central nervous system actions of leptin can abolish the hyperglycemia as well as the altered IHR and BRS in STZ-induced diabetes.  相似文献   

9.
The Ca(2+)-ATPase activity of rat brain microsomes was studied in streptozotocin (STZ)-induced diabetes. Male rats, 200-250 g, were rendered diabetic by injection of STZ (45 mg kg(-1) body weight) via the teil vein. Brain tissues were collected at 1, 4 and 10 weeks after diabetes was induced for determination of Ca(2+)-ATPase activity, lipid peroxidation and tissue calcium levels. Diabetic rats had significantly elevated blood glucose levels compared to controls. Blood glucose levels were 92.92 +/- 1.22 mg dl(-1) (mean +/- SEM) for the control group, 362.50 +/- 9.61 mg dl(-1) at 1 week and >500 mg dl(-1) at 4, 8 and 10 weeks for the diabetics. Enzyme activities were significantly decreased at 1, 4, 8 and 10 weeks of diabetes relative to the control group (p < 0.001). Ca(2+)-ATPase activity was 0.084 +/- 0.008 U l(-1), 0.029 +/- 0.005 U l(-1), 0.029 +/- 0.006 U l(-1), 0.033 +/- 0.003 U l(-1) and 0.058 +/- 0.006 U l(-1) (mean +/- SEM) at control, 1, 4, 8 and 10 week of diabetes respectively. The change in calcium levels in diabetic rat brain at 8 and 10 weeks of diabetes was significantly higher than that of the control group (p < 0.05). On the other hand lipid peroxidation measured as TBARS (thiobarbituric acid reactive substances) was significantly higher at 8 and 10 weeks of diabetes (p < 0.05). The increase in lipid peroxidation observed in diabetic rat brain may be partly responsible for the decrease in calcium ATPase activity.  相似文献   

10.
Streptozotocin (70 mg/kg) was administered intravenously to female Syrian hamsters. The hamsters received insulin (5U/animal/day). Insulin treatment was withdrawn 3 days before sacrifice in one group, while another group was maintained on insulin until sacrifice. Ten to 14 days following streptozotocin administration the animals were killed, and the pancreatic islets isolated and subsequently dispersed. Islet DNA content was decreased while the glucagon content was elevated by streptozotocin treatment. The glucagon secretory responsiveness of the dispersed alpha cells of control animals was stimulated by glucopenia and decreased by glucose. Alpha cells of streptozotocin hamsters were not only suppressed but were actually stimulated by high glucose concentrations. Treatment with insulin in vivo but not in vitro, resulted in a restoration of the alpha cells responsiveness to glucose suppression. Dispersed alpha cells from control and streptozotocin treated animals were stimulated by arginine. Basal and total glucagon secretion was greatest in dispersed alpha cells from streptozotocin treated animals. We concluded: that the paradoxical response of alpha cells to glucose noted in diabetes is not due to short term insulin deprivation or the lack of morphologic contact with beta cells; that the alpha cells require and insulin stimulated islet metabolite and extra islet materials to respond appropriately to glucose; and that the alpha cells response to arginine is mediated independently of glucose regulation.  相似文献   

11.
Hyperglycemia is an important predictor of cardiovascular mortality in patients with diabetes. We investigated the hypothesis that diabetes or acute hyperglycemia attenuates the reduction of myocardial infarct size produced by activation of mitochondrial ATP-regulated potassium (K(ATP)) channels. Acutely instrumented barbiturate-anesthetized dogs were subjected to a 60-min period of coronary artery occlusion and 3 h of reperfusion. Myocardial infarct size (triphenyltetrazolium chloride staining) was 25 +/- 1, 28 +/- 3, and 25 +/- 1% of the area at risk (AAR) for infarction in control, diabetic (3 wk after streptozotocin-alloxan), and hyperglycemic (15% intravenous dextrose) dogs, respectively. Diazoxide (2.5 mg/kg iv) significantly decreased infarct size (10 +/- 1% of AAR, P < 0.05) but did not produce protection in the presence of diabetes (28 +/- 5%) or moderate hyperglycemia (blood glucose 310 +/- 10 mg/dl; 23 +/- 2%). The dose of diazoxide and the degree of hyperglycemia were interactive. Profound (blood glucose 574 +/- 23 mg/dl) but not moderate hyperglycemia blocked the effects of high-dose (5.0 mg/kg) diazoxide [26 +/- 3, 15 +/- 3 (P < 0.05), and 11 +/- 2% (P < 0.05), respectively]. There were no differences in systemic hemodynamics, AAR, or coronary collateral blood flow (by radioactive microspheres) between groups. The results indicate that diabetes or hyperglycemia impairs activation of mitochondrial K(ATP) channels.  相似文献   

12.
A decrease in superoxide dismutase (SOD), the first cellular defence against free radicals, occurs at about the same time as the activation of macrophages within the islets of low-dose streptozocin (LDS)-treated mice. Furthermore, a decrease in the total islet capillary area also has been shown to occur by 10 days after the first streptozocin (STZ) injection and this decline in capillary area is concomitant with the activation of macrophages as is the fall in SOD. Intracellular levels of SOD have been shown to increase after administration of acetyl-homocysteine-thiolactone (citiolone); therefore, the aim of the present study was to observe any relationship between the citiolone-induced increase in SOD levels and islet microvasculature area during LDS-induced diabetes. C57BL6/J male mice were pretreated with daily intramuscular injections of 50 mg citiolone/kg body wt. for 30 days and were then rendered diabetic with 45 mg STZ/kg body wt. given for 5 days; citiolone was given until the animals were killed (days 6, 11 and 18 after the first STZ injection). Further animals were used as non-diabetic and diabetic (STZ-only) controls. The results show that LDS-treated animals when given citiolone: (1) were generally normoglycaemic; (2) had SOD levels that were higher than those of STZ-only control animals; (3) had an islet capillary area that was larger than that of LDS-treated mice. Therefore, the administration of a free radical scavenger, namely citiolone, is able partly to counteract and delay the reduction of islet vascular area and oedema formation in LDS-treated mice.  相似文献   

13.
Background aimsThe success of islet transplantation for diabetes depends on the availability of an adequate number of allogeneic or autologous islets. Postnatal stem cells are now considered for the generation of physiologically competent, insulin-producing cells. Our group showed earlier that it is possible to generate functional islets from human dental pulp stem cells by using a serum-free cocktail in a three-step protocol.MethodsWe compared the yield of generated islet-like cell clusters (ICCs) from stem cells from pulps of human exfoliated deciduous teeth (SHED) and dental pulp stem cells from permanent teeth (DPSCs). ICCs derived from SHED were packed in immuno-isolatory biocompatible macro-capsules and transplanted into streptozotocin (STZ)-induced diabetic mice. Non-diabetic and diabetic controls were transplanted with macro-capsules with or without islets.ResultsSHED were superior to DPSCs. STZ diabetic mice alone and mice transplanted with empty macro-capsules exhibited hyperglycemia throughout the experiment, whereas mice transplanted with macro-capsules containing ICCs were restored to normoglycemia within 3–4 weeks, which persisted for >60 days.ConclusionsOur results demonstrate for the first time that ICCs derived from SHED reverse STZ diabetes in mice without immunosuppression and offer an autologous and non-controversial source of human tissue that could be used for stem cell therapy in diabetes.  相似文献   

14.
In this study, the effects of rat pancreatic extract (RPE) on regeneration of impaired mouse pancreas and proliferation of beta-cell line (HIT-T15) were investigated. RPE from the regenerating pancreas (2 days after 60% pancreatectomy) was treated to cure streptozotocin (STZ) induced diabetes in BALB/c mice. RPE-treated BALB/c mice for 21 consecutive days became euglycemic by day 30 and remained normoglycemic during a 150 day follow-up. Saline treated mice remained hyperglycemic sustained uncontrolled hyperglycemia. Islet neogenesis was observed in RPE-treated mice and confirmed by use of immunocytochemistry. Morphometric analysis of pancreas in reverted RPE-treated mice showed a new population of small islets compared with saline controls and an increased islet number. When HIT-T15 cells were treated with RPE, HIT-T15 cell proliferation and insulin secretion increased with increases in the RPE concentration. These results imply that RPE have the regeneration factors and help in the cure of diabetes.  相似文献   

15.
In 2004, the human islet amyloid polypeptide (HIP) rat model was created by transfecting the Sprague-Dawley rat with the human islet amyloid polypeptide (hIAPP)-amylin gene. The objective of this study is to utilize the transmission electron microscope to study the longitudinal cellular and extracellular morphological changes within the islets of this model at 4, 8, and 14 months of age. It has been previously demonstrated that the 2-, 5-, and 10-month HIP models have no diabetes, impaired fasting glucose, and diabetes, respectively. The 4-month HIP model (FBS 123 mg/dl) demonstrated an abundance of beta-cells and insulin secretory granules with significant pericapillary and inter-beta-cell islet amyloid deposition. The 8-month model (FBS 187 mg/dl) demonstrated extensive islet amyloid deposition and marked changes of beta-cell apoptosis. The 14-month-old model (FBS 244 mg/dl) demonstrated islet and beta-cell atrophy with even greater amounts of extracellular islet amyloid compared to the 4-month-old and 8-month-old models. Functional beta cells were sparse and were associated with intra islet adipose deposition. These findings of ultrastructure cellular and extracellular morphological longitudinal remodeling changes in this novel animal model of type 2 diabetes may provide investigators with a better understanding regarding the role of islet amyloid in human islet.  相似文献   

16.
1. Apolipoprotein A-1, isolated from hamster high density lipoprotein, possessed a molecular weight of approximately 27,000. 2. Its amino acid composition differed from human apo A-1 and it contained a higher threonine to serine ratio and a higher methionine and leucine content. 3. The concentration in normal serum was 126.0 +/- 1.9 mg/dl. 4. Apolipoprotein B, isolated from hamster low density lipoprotein consisted of three major components when analyzed by SDS-polyacrylamide gel electrophoresis with Mrs of 635 Kd, 460 Kd and 305 Kd respectively. 5. Hamster apo B possessed a higher aspartic acid to glutamic acid ratio and a higher methionine and valine content than human apo B. 6. The concentration in normal serum was 20.9 +/- 1.0 mg/dl. 7. The apolipoprotein and lipoprotein profile of hamsters fed a high cholesterol diet for 30 days changed considerably. 8. Total serum cholesterol levels increased 7 fold; LDL levels increased 14 fold; HDL levels doubled and total serum triglyceride increased 3 fold. 9. Apo A-1 levels increased by 45% and apo B levels increased 5 fold.  相似文献   

17.
Islet capillary area was followed daily in mice after treatment with low-dose streptozocin (LDS), in order to elucidate the exact period during which the insular vascular bed undergoes a significant reduction. Forty C57BL6/J mice were diabetized with 5 x 40 mg streptozocin (STZ)/kg body wt and killed 6, 8, 9, 10, 11, 12, 15 or 18 days after the first STZ injection. Pancreases were sectioned and processed by staining for alkaline phosphatases using a method devised by Gomori. The percentage of the islet parenchymal area occupied by intra-islet capillaries was measured using a Videoplan videoanalyzer. LDS treatment did not significantly alter the islet capillary area up to day 8; the first signs of reduction were seen on days 9 and 10 (islet capillary area at days 9 and 10 respectively was 2.68% and 2.60% of controls). At day 11 a dramatic decrease in islet capillary area was seen (1.38%), which was not accompanied by a similar reduction of the islet parenchymal area. The reduction in islet capillary area continued to progress up to day 15 by which time it had achieved the lowest level (0.72%). On day 18, values remained practically unchanged.  相似文献   

18.
The effectiveness of combining the subcutaneous administration of short- and intermediate-acting insulin with the intravenous infusion of glucose in maintaining normoglycemia during labour and delivery in insulin-dependent diabetic women was tested. Fifty women were given intermediate-acting insulin twice daily in doses that were fractions of their usual dose, based on the projected duration of labour. In addition, they were given regular (i.e., short-acting) insulin every 6 hours, the dose being 1% of their total daily insulin dose for every increase of 10 mg/dl above 100 mg/dl (5.6 mmol/l) in the plasma glucose level 1 hour previously; the levels were measured every 3 hours. All the patients were fasting and received a basal intravenous infusion of 6 g/h of glucose; the rate of infusion was increased by 1 g/h for every decrease of 10 mg/dl in the plasma glucose level below 100 mg/dl. The mean plasma glucose levels (+/- standard deviation) were 90 +/- 46 mg/dl after 3 hours of labour, 92 +/- 35 mg/dl after 6 hours, 97 +/- 49 mg/dl after 9 hours and 107 +/- 65 mg/dl after 12 hours. With only one exception, in a premature infant, the 5-minute Apgar scores were identical to those of the infants of nondiabetic women.  相似文献   

19.
Summary Islet capillary area was followed daily in mice after treatment with low-dose streptozocin (LDS), in order to elucidate the exact period during which the insular vascular bed undergoes a significant reduction. Forty C57BL6/J mice were diabetized with 5×40 mg streptozocin (STZ)/kg body wt and killed 6, 8, 9, 10, 11, 12, 15 or 18 days after the first STZ injection. Pancreases were sectioned and processed by staining for alkaline phosphatases using a method devised by Gomori. The percentage of the islet parenchymal area occupied by intra-islet capillaries was measured using a Videoplan videoanalyzer. LDS treatment did not significantly alter the islet capillary area up to day 8; the first signs of reduction were seen on days 9 and 10 (islet capillary area at days 9 and 10 respectively was 2.68% and 2.60% of controls). At day 11 a dramatic decrease in islet capillary area was seen (1.38%), which was not accompanied by a similar reduction of the islet parenchymal area. The reduction in islet capillary area continued to progress up to day 15 by which time it had achieved the lowest level (0.72%). On day 18, values remained practically unchanged.  相似文献   

20.
The dried sap of the aloe plant (aloes) is one of several traditional remedies used for diabetes in the Arabian peninsula. Its ability to lower the blood glucose was studied in 5 patients with non-insulin-dependent diabetes and in Swiss albino mice made diabetic using alloxan. During the ingestion of aloes, half a teaspoonful daily for 4-14 weeks, the fasting serum glucose level fell in every patient from a mean of 273 +/- 25 (SE) to 151 +/- 23 mg/dl (p less than 0.05) with no change in body weight. In normal mice, both glibenclamide (10 mg/kg twice daily) and aloes (500 mg/kg twice daily) induced hypoglycaemia after 5 days, 71 +/- 6.2 and 91 +/- 7.6 mg/dl, respectively, versus 130 +/- 7 mg/dl in control animals (p less than 0.01); only glibenclamide was effective after 3 days. In the diabetic mice, fasting plasma glucose was significantly reduced by glibenclamide and aloes after 3 days. Thereafter only aloes was effective and by day 7 the plasma glucose was 394 +/- 22.0 versus 646 +/- 35.9 mg/dl, in the controls and 726 +/- 30.9 mg/dl in the glibenclamide treated group (p less than 0.01). We conclude that aloes contains a hypoglycaemic agent which lowers the blood glucose by as yet unknown mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号