首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gene》1998,222(2):237-244
We cloned a second human β-defensin gene, HBD-2, and determined its gene structure and expression in inflamed tissue sections. The entire gene spanned about 2 kb with two small exons and one intron. Radiation hybrid studies confirmed the location on chromosome 8p, were consistent with the order HNP-1, HBD-1 and HBD-2, and located HBD-2 as the most centromeric of the genes. By three-color fluorescence in situ hybridization on both free chromatin fiber mapping and interphase mapping, HBD-1, HBD-2 and HNP-1 were mapped to chromosome 8p23. HBD-1 was within 40–100 kb of HNP-1, while HBD-2 was about 500–600 kb from HBD-1, with the most likely order HNP-1, HBD-1, HBD-2. The expression of HBD-2 was locally regulated by inflammation. HBD-2 mRNA was markedly increased in the epidermis surrounding inflamed regions, but not detectable in adjacent non-inflamed areas, a distribution that was confirmed at the peptide level by immunostaining with HBD-2 antibody. The HBD-2 gene is the first member of the human defensin family that is locally inducible by inflammation.  相似文献   

2.
Discovery of new human beta-defensins using a genomics-based approach   总被引:31,自引:0,他引:31  
Epithelial beta-defensins are broad-spectrum cationic antimicrobial peptides that also act as chemokines for adaptive immune cells. In the human genome, all known defensin genes cluster to a <1 Mb region of chromosome 8p22-p23. To identify new defensin genes, the DNA sequence from a contig of large-insert genomic clones from the region containing human beta-defensin-2 (HBD-2) was analyzed for the presence of defensin genes. This sequence survey identified a novel beta-defensin, termed HBD-3. The HBD-3 gene contains two exons, is located 13 kb upstream from the HBD-2 gene, and it is transcribed in the same direction. A partial HBD-3 cDNA clone was amplified from cDNA derived from IL-1beta induced fetal lung tissue. The cDNA sequence encodes for a 67 amino acid peptide that is approximately 43% identical to HBD-2 and shares the beta-defensin six cysteine motif. By PCR analysis of two commercial cDNA panels, HBD-3 expression was detected in adult heart, skeletal muscle, placenta and in fetal thymus. From RT-PCR experiments, HBD-3 expression was observed in skin, esophagus, gingival keratinocytes, placenta and trachea. Furthermore, in fetal lung explants and gingival keratinocytes, HBD-3 mRNA expression was induced by IL-1beta. Additional sequence analysis identified the HE2 (human epididymis secretory protein) gene 17 kb upstream from the HBD-3 gene. One splice variant of this gene (HE2beta1) encodes a beta-defensin consensus cysteine motif, suggesting it represents a defensin gene product. HE2beta1 mRNA expression was detected in gingival keratinocytes and bronchial epithelia using RT-PCR analysis. The discovery of these novel beta-defensin genes may allow further understanding of the role of defensins in host immunity at mucosal surfaces.  相似文献   

3.
Effect of ions on antibacterial activity of human beta defensin 2   总被引:6,自引:0,他引:6  
Human beta defensin 2 (HBD-2), the most recently discovered human defensin, has been considered to work as a host defense substance against microbial infection. Using Escherichia coli ATCC 25922, we investigated how some cations and anions influenced the antimicrobial activity of HBD-2. This activity, measured in 10 mM phosphate buffer at a concentration of 20 microg/ml, reduced significantly in the presence of 100 and 150 mM sodium or potassium chloride. The reduction was not significantly different when the total amounts of sodium and potassium ions were equal. The kind and the valence of anions (chlorine and sulfate ions) did not affect the bactericidal activity as long as the concentrations of sodium ions were equal. Divalent ions (calcium and magnesium ions) added to 10 mM of Tris buffer significantly inactivated HBD-2 at much lower concentrations (more than or equal to 0.01 mM and 0.05 mM, respectively) than the monovalent ions did. These findings suggest that HBD-2 kills the bacteria through at least two phases, which are affected independently by either monovalent or divalent ions and unaffected by anions.  相似文献   

4.
A 450-kb contig of defensin genes on human chromosome 8p23.   总被引:10,自引:0,他引:10  
R Linzmeier  C H Ho  B V Hoang  T Ganz 《Gene》1999,233(1-2):205-211
Defensins are a large family of host defense peptides expressed in leukocytes and epithelia. Using P1 and BAC clones, we have determined the organization of the human alpha-defensin genes and the beta-defensin gene HDEFB1 on chromosome 8p23. From the telomere, the order of the genes (with encoded peptides in parentheses) is HDEFA5 (HD-5), HDEFA1/1A (HNP-1/3), HDEFA4 (HNP-4), HDEFA6 (HD-6), and HDEFB1 (HBD-1). These genes span a region of approximately 450kb. Genes encoding intestinal Paneth cell defensins (HDEFA5 and HDEFA6) flank the myeloid defensin gene cluster (HDEFA1, HDEFA1A, HDEFA4). Based on our previous studies, the remaining known defensin gene, HDEFB2 (HBD-2), is about 400kb centromeric to HDEFB1. This map supports the hypothesis, originally proposed because of sequence similarities, that myeloid alpha-defensin genes evolved by reduplication and divergence from Paneth cell defensin genes, and identifies regions and clones, which should be useful in the search for new defensin genes.  相似文献   

5.
Defensins are natural mucosal antimicrobial peptides and their broad spectrum activity against aerobic or facultative anaerobic bacteria has been well investigated. The aim of this study was to systematically examine the antibacterial activity of the small intestinal Paneth cell derived α-defensin HD5 and the major colonic β-defensins HBD-1–3 against strict anaerobic intestinal bacteria. The antibacterial activity was assessed with a flow cytometric assay employing a membrane potential sensitive dye as marker for loss of cell viability. The majority of the tested strains belonging to the dominant anaerobe genera of the gut, Bacteroides and Parabacteroides, were only minimally affected by the constitutively expressed defensins HD5 and HBD-1. The inducible defensin HBD-2 had a limited antibacterial effect, whereas the inducible HBD-3 exhibited potent activity against most strains. The effect of HBD-3 on Bacteroides sp. appeared to be dependent on the presence of oxygen. Bacteroides fragilis strains isolated from blood during bacteremia or from extraintestinal infections were more resistant to HBD-3 than strains from the physiological gut flora. Thus, defensin resistance is not only species- but also strain-specific and may be clinically relevant in the host–bacteria interaction influencing mucosal translocation and systemic infection.  相似文献   

6.
Human beta-defensin-2.   总被引:42,自引:0,他引:42  
Human beta-defensin-2 (HBD-2) is a cysteine-rich cationic low molecular weight antimicrobial peptide recently discovered in psoriatic lesional skin. It is produced by a number of epithelial cells and exhibits potent antimicrobial activity against Gram-negative bacteria and Candida, but not Gram-positive Staphylococcus aureus. HBD-2 represents the first human defensin that is produced following stimulation of epithelial cells by contact with microorganisms such as Pseudomonas aeruginosa or cytokines such as TNF-alpha and IL-1 beta. The HBD-2 gene and protein are locally expressed in keratinocytes associated with inflammatory skin lesions such as psoriasis as well as in the infected lung epithelia of patients with cystic fibrosis. It is intriguing to speculate that HBD-2 is a dynamic component of the local epithelial defense system of the skin and respiratory tract having a role to protect surfaces from infection, and providing a possible reason why skin and lung infections with Gram-negative bacteria are rather rare.  相似文献   

7.
Defensins are antimicrobial peptides expressed by plants and animals. In mammals there are three subfamilies of defensins, distinguished by structural features: α, β and θ. Alpha and β-defensins are linear peptides with broad anti-microbial activity that are expressed by many mammals including humans. In contrast, θ-defensins are cyclic anti-microbial peptides made by several non-human primates but not humans. All three defensin types have anti-HIV-1 activity, but their mechanisms of action differ. We studied the anti-HIV-1 activity of one defensin from each group, HNP-1 (α), HBD-2 (β) and RTD-1 (θ). We examined how each defensin affected HIV-1 infection and demonstrated that the cyclic defensin RTD-1 inhibited HIV-1 entry, while acyclic HNP-1 and HBD-2 inhibited HIV-1 replication even when added 12 hours post-infection and blocked viral replication after HIV-1 cDNA formation. We further found that all three defensins downmodulated CXCR4. Moreover, RTD-1 inactivated X4 HIV-1, while HNP-1 and HBD-2 inactivated both X4 and R5 HIV-1. The data presented here show that acyclic and cyclic defensins block HIV-1 replication by shared and diverse mechanisms. Moreover, we found that HNP-1 and RTD-1 directly inhibited firefly luciferase enzymatic activity, which may affect the interpretation of previously published data.  相似文献   

8.
Defensins are endogenous antimicrobial peptides that protect the intestinal mucosa against bacterial invasion. It has been suggested that deficient defensin expression may underlie the chronic inflammation of Crohn disease (CD). The DNA copy number of the beta-defensin gene cluster on chromosome 8p23.1 is highly polymorphic within the healthy population, which suggests that the defective beta-defensin induction in colonic CD could be due to low beta-defensin-gene copy number. Here, we tested this hypothesis, using genomewide DNA copy number profiling by array-based comparative genomic hybridization and quantitative polymerase-chain-reaction analysis of the human beta-defensin 2 (HBD-2) gene. We showed that healthy individuals, as well as patients with ulcerative colitis, have a median of 4 (range 2-10) HBD-2 gene copies per genome. In a surgical cohort with ileal or colonic CD and in a second large cohort with inflammatory bowel diseases, those with ileal resections/disease exhibited a normal median HBD-2 copy number of 4, whereas those with colonic CD had a median of only 3 copies per genome (P=.008 for the surgical cohort; P=.032 for the second cohort). Overall, the copy number distribution in colonic CD was shifted to lower numbers compared with controls (P=.002 for both the surgical cohort and the cohort with inflammatory bowel diseases). Individuals with < or = 3 copies have a significantly higher risk of developing colonic CD than did individuals with > or = 4 copies (odds ratio 3.06; 95% confidence interval 1.46-6.45). An HBD-2 gene copy number of < 4 was associated with diminished mucosal HBD-2 mRNA expression (P=.033). In conclusion, a lower HBD-2 gene copy number in the beta-defensin locus predisposes to colonic CD, most likely through diminished beta-defensin expression.  相似文献   

9.
Numerous β-defensins have been identified in birds, and the potential use of these peptides as alternatives to antibiotics has been proposed, in particular to fight antibiotic-resistant and zoonotic bacterial species. Little is known about the mechanism of antibacterial activity of avian β-defensins, and this study was carried out to obtain initial insights into the involvement of structural features or specific residues in the antimicrobial activity of chicken AvBD2. Chicken AvBD2 and its enantiomeric counterpart were chemically synthesized. Peptide elongation and oxidative folding were both optimized. The similar antimicrobial activity measured for both L- and D-proteins clearly indicates that there is no chiral partner. Therefore, the bacterial membrane is in all likelihood the primary target. Moreover, this work indicates that the three-dimensional fold is required for an optimal antimicrobial activity, in particular for gram-positive bacterial strains. The three-dimensional NMR structure of chicken AvBD2 defensin displays the structural three-stranded antiparallel β-sheet characteristic of β-defensins. The surface of the molecule does not display any amphipathic character. In light of this new structure and of the king penguin AvBD103b defensin structure, the consensus sequence of the avian β-defensin family was analyzed. Well conserved residues were highlighted, and the potential strategic role of the lysine 31 residue of AvBD2 was emphasized. The synthetic AvBD2-K31A variant displayed substantial N-terminal structural modifications and a dramatic decrease in activity. Taken together, these results demonstrate the structural as well as the functional role of the critical lysine 31 residue in antimicrobial activity.  相似文献   

10.
11.
Defensins are cationic peptides with broad-spectrum antimicrobial activity. They are members of a supergene family consisting of alpha and beta subtypes and each subtype is comprised of a number of different isoforms. For example, human alpha-defensin (HAD) has six isoforms, which are expressed by polymorphonuclear leukocytes and Paneth cells. In contrast, human beta-defensin (HBD) has two isoforms that are expressed by epithelial cells of the skin, gut, respiratory and urogenital tracts. Recently, HBD-1 was detected in human brain biopsy tissue. However, little is known about the expression of HBD-1 or HBD-2 in the CNS and whether neural cells can secrete these peptides. For the present study, human astrocyte, microglial, meningeal fibroblast and neuronal cultures were probed for the expression of HBD-1 and HBD-2 mRNA and protein. Each cell type was either maintained in tissue culture medium alone or in medium containing lipopolysaccharide (LPS) at concentrations ranging from 0.1 to 1 microgram/mL, interleukin-1 beta (IL-1beta) at 1-50 ng/mL, or tumor necrosis factor alpha (TNF-alpha) at the same concentrations. The expression of HBD-1 and HBD-2 mRNAs was monitored by RT-PCR. The cDNA products were sequenced to characterize the gene product. HBD-2 protein was detected by immunoblot, immunoprecipitation and immunocytochemistry. Results of these studies showed that HBD-1 mRNA was detected in all cell cultures except in those enriched for neurons. In contrast, HBD-2 mRNA was detected only in astrocyte cultures that were treated with LPS, IL-1beta or TNF-alpha. The detection of the respective proteins correlated positively with the mRNA results. As such, these data represent the first demonstration of HBD-2 expression by astrocytes and suggest that this peptide may play a role in host defense against bacterial CNS pathogenesis.  相似文献   

12.
Atopic dermatitis (AD) and psoriasis are the two most common chronic skin diseases. However patients with AD, but not psoriasis, suffer from frequent skin infections. To understand the molecular basis for this phenomenon, skin biopsies from AD and psoriasis patients were analyzed using GeneChip microarrays. The expression of innate immune response genes, human beta defensin (HBD)-2, IL-8, and inducible NO synthetase (iNOS) was found to be decreased in AD, as compared with psoriasis, skin (HBD-2, p = 0.00021; IL-8, p = 0.044; iNOS, p = 0.016). Decreased expression of the novel antimicrobial peptide, HBD-3, was demonstrated at the mRNA level by real-time PCR (p = 0.0002) and at the protein level by immunohistochemistry (p = 0.0005). By real-time PCR, our data confirmed that AD, as compared with psoriasis, is associated with elevated skin production of Th2 cytokines and low levels of proinflammatory cytokines such as TNF-alpha, IFN-gamma, and IL-1beta. Because HBD-2, IL-8, and iNOS are known to be inhibited by Th2 cytokines, we examined the effects of IL-4 and IL-13 on HBD-3 expression in keratinocyte culture in vitro. We found that IL-13 and IL-4 inhibited TNF-alpha- and IFN-gamma-induced HBD-3 production. These studies indicate that decreased expression of a constellation of antimicrobial genes occurs as the result of local up-regulation of Th2 cytokines and the lack of elevated amounts of TNF-alpha and IFN-gamma under inflammatory conditions in AD skin. These observations could explain the increased susceptibility of AD skin to microorganisms, and suggest a new fundamental rule that may explain the mechanism for frequent infection in other Th2 cytokine-mediated diseases.  相似文献   

13.
The solution structure of two homologous naturally occurring antimicrobial peptides, rabbit defensin NP-2 and human defensin HNP-1, have been determined by two-dimensional nuclear magnetic resonance spectroscopy, distance geometry, and restrained molecular dynamics calculations. The structure of these defensins consists of an antiparallel beta-sheet in a hairpin conformation, a short region of triple-stranded beta-sheet, several tight turns, and a loop region that has a well-defined local structure but with a global orientation that is not well-defined with respect to the rest of the molecule. The solution structures of these two peptides are compared with the solution and crystal structures of two other homologous defensins. The structures for the defensins are also compared with known structures of other naturally occurring antimicrobial peptides.  相似文献   

14.
Fant F  Vranken WF  Borremans FA 《Proteins》1999,37(3):388-403
Aesculus hippocastanum antimicrobial protein 1 (Ah-AMP1) is a plant defensin isolated from horse chestnuts. The plant defensins have been divided in several subfamilies according to their amino acid sequence homology. Ah-AMP1, belonging to subfamily A2, inhibits growth of a broad range of fungi. So far, a three-dimensional structure has been determined only for members of subfamilies A3 and B2. In order to understand activity and specificity of these plant defensins, the structure of a protein belonging to subfamily A2 is needed. We report the three-dimensional solution structure of Ah-AMP1 as determined from two-dimensional 1H nuclear magnetic resonance data. The structure features all the characteristics of the "cysteine-stabilized alpha beta-motif." A comparison of the structure, the electrostatic potential surface and regions important for interaction with the fungal receptor, is made with Rs-AFP1 (plant defensin of subfamily A3). Thus, residues important for activity and specificity have been assigned.  相似文献   

15.
Big defensin is a 79-residue peptide derived from hemocytes of the Japanese horseshoe crab. It has antimicrobial activities against Gram-positive and -negative bacteria. The amino acid sequence of big defensin can be divided into an N-terminal hydrophobic half and a C-terminal cationic half. Interestingly, the trypsin cleaves big defensin into two fragments, the N-terminal and C-terminal fragments, which are responsible for antimicrobial activity against Gram-positive and -negative bacteria, respectively. To explore the antimicrobial mechanism of big defensin, we determined the solution structure of mature big defensin and performed a titration experiment with DPC micelles. Big defensin has a novel defensin structure; the C-terminal domain adopts a beta-defensin structure, and the N-terminal domain forms a unique globular conformation. It is noteworthy that the hydrophobic N-terminal domain undergoes a conformational change in micelle solution, while the C-terminal domain remains unchanged. Here, we propose that the N-terminal domain achieves its antimicrobial activity in a novel fashion and explain that big defensin has developed a strategy different from those of other beta-defensins to suppress the growth of Gram-positive bacteria.  相似文献   

16.
Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro   总被引:12,自引:0,他引:12  
Adenoviral gene transfer is a promising tool for direct treatment of cystic fibrosis by local application of the CFTR-gene via the airway. However, various host defense mechanisms reduce the adenoviral infectivity and hereby the success of adenoviral transduction. Twenty-eight of 62 BALs from various patients exerted strong inhibition of adenoviral infection of 293 cells. This soluble activity could be attributed to larger peptides rather than to small molecules. Beside immunoglobulins, certain epithelial cell-derived anti-microbial polypeptides called defensins might be involved. Therefore, we investigated the inhibitory potential of the defensins HNP-1 and HBD-2 on adenoviral infectivity. 293 cells infected with adenovirus-type 5 were treated with both peptides. Compared to control, HNP-1 reduced adenoviral infection by more than 95% if administered at 50 microg/ml, and the IC50-value was 15 microg/ml. In contrast, HBD-2 was much less efficient and did not block adenoviral infection at doses up to 50 microg/ml. Our data demonstrate that the presence of certain polypeptides in the BAL, i.e. the defensin HNP-1, might be the major obstacle for adenoviral gene transfer, particularly in patients with inflammatory diseases.  相似文献   

17.
The structure of a novel plant defensin isolated from the flowers of Petunia hybrida has been determined by (1)H NMR spectroscopy. P. hybrida defensin 1 (PhD1) is a basic, cysteine-rich, antifungal protein of 47 residues and is the first example of a new subclass of plant defensins with five disulfide bonds whose structure has been determined. PhD1 has the fold of the cysteine-stabilized alphabeta motif, consisting of an alpha-helix and a triple-stranded antiparallel beta-sheet, except that it contains a fifth disulfide bond from the first loop to the alpha-helix. The additional disulfide bond is accommodated in PhD1 without any alteration of its tertiary structure with respect to other plant defensins. Comparison of its structure with those of classic, four-disulfide defensins has allowed us to identify a previously unrecognized hydrogen bond network that is integral to structure stabilization in the family.  相似文献   

18.
The three human beta-defensins, HBD1--3, are 33--47-residue, cationic antimicrobial proteins expressed by epithelial cells. All three proteins have broad spectrum antimicrobial activity, with HBD3 consistently being the most potent. Additionally, HBD3 has significant bactericidal activity against Gram-positive Staphylococcus aureus at physiological salt concentrations. We have compared the multimeric state of the three beta-defensins using NMR diffusion spectroscopy, dynamic and static light scattering, and analysis of the migration of the three beta-defensins on a native gel. All three techniques are in agreement, suggesting that HBD-3 is a dimer, while HBD-1 and HBD-2 are monomeric. Subsequently, the NMR solution structures of HBD1 and HBD3 were determined using standard homonuclear techniques and compared with the previously determined solution structure of HBD2. Both HBD1 and HBD3 form well defined structures with backbone root mean square deviations of 0.451 and 0.616 A, respectively. The tertiary structures of all three beta-defensins are similar, with a short helical segment preceding a three-stranded antiparallel beta-sheet. The surface charge density of each of the defensins is markedly different, with the surface of HBD3 significantly more basic. Analysis of the NMR data and structures led us to suggest that HBD3 forms a symmetrical dimer through strand beta2 of the beta-sheet. The increased anti-Staphylococcal activity of HBD3 may be explained by the capacity of the protein to form dimers in solution at low concentrations, an amphipathic dimer structure, and the increased positive surface charge compared with HBD1 and HBD2.  相似文献   

19.
beta-Defensins are broad spectrum antimicrobial peptides expressed at epithelial surfaces. Two human beta-defensins, HBD-1 and HBD-2, have been identified. In the lung, HBD-2 is an inducible product of airway epithelia and may play a role in innate mucosal defenses. We recently characterized rat homologs (RBD-1, RBD-2) of the human genes and used these sequences to identify novel mouse genes. Mouse beta-defensin-4 (MBD-4) was amplified from lung cDNA using polymerase chain reaction primers designed from conserved sequences of RBD-2 and HBD-2. A full-length cDNA was cloned which encodes a putative peptide with the sequence MRIHYLLFTFLLVLLSPLAAFTQIINNPITCMTNGAICWGPCPTAFRQIGNCGHFKVRCCKIR. The peptide shares approximately 40% identity with HBD-2. MBD-4 mRNA was expressed in the esophagus, tongue, and trachea but not in any of 20 other tissues surveyed. Cloning of the genomic sequence of MBD-4 revealed two nearly (>99%) identical sequences encoding MBD-4 and the presence of numerous additional highly similar genomic sequences. Radiation hybrid mapping localized this gene to a region of chromosome 8 near several other defensins, MBD-2, MBD-3, and alpha-defensins (cryptdins)-3 and -17, consistent with a gene cluster. Our genomic cloning and mapping data suggest that there is a large beta-defensin gene family in mice. Identification of murine beta-defensins provides an opportunity to understand further the role of these peptides in host defense through animal model studies and the generation of beta-defensin-deficient animals by gene targeting.  相似文献   

20.
We cloned a novel human β-defensin gene and determined its full-length cDNA sequence. The entire gene spanned more than 7 kb and included a large 6962-bp intron. The 362-bp cDNA encoded a prepropeptide that corresponded precisely to the recently identified human β-defensin HBD-1, an antimicrobial peptide implicated in the resistance of epithelial surfaces to microbial colonization. By two-color fluorescencein situhybridization on both metaphase chromosome and released chromatin fiber, HBD-1 gene (DEFB1 in HUGO/GDB nomenclature) mapped to chromosomal region 8p23.1–p23.2 in close proximity (within 100–150 kb) to the gene for the human neutrophil α-defensin HNP-1 (DEFA1). Thus, despite a complete lack of DNA sequence similarity and despite differences in their disulfide-pairing pattern, the α- and β-families appear to have evolved from a common premammalian defensin gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号