首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The utilization of fructooligosaccharides (FOS) and inulin by 55 Bifidobacterium strains was investigated. Whereas FOS were fermented by most strains, only eight grew when inulin was used as the carbon source. Residual carbohydrates were analyzed by high-performance anion-exchange chromatography with pulsed amperometric detection after batch fermentation. A strain-dependent capability to degrade fructans of different lengths was observed. During batch fermentation on inulin, the short fructans disappeared first, and then the longer ones were gradually consumed. However, growth occurred through a single uninterrupted exponential phase without exhibiting polyauxic behavior in relation to the chain length. Cellular beta-fructofuranosidases were found in all of the 21 Bifidobacterium strains tested. Four strains were tested for extracellular hydrolytic activity against fructans, and only the two strains which ferment inulin showed this activity. Batch cultures inoculated with human fecal slurries confirmed the bifidogenic effect of both FOS and inulin and indicated that other intestinal microbial groups also grow on these carbon sources. We observed that bifidobacteria grew by cross-feeding on mono- and oligosaccharides produced by primary inulin intestinal degraders, as evidenced by the high hydrolytic activity of fecal supernatants. FOS and inulin greatly affected the production of short-chain fatty acids in fecal cultures; butyrate was the major fermentation product on inulin, whereas mostly acetate and lactate were produced on FOS.  相似文献   

2.
Increased carbohydrate fermentation, compared with protein fermentation, could benefit gut health. In two in vitro experiments, the effect of carbohydrate-rich feed ingredients on fermentation characteristics of ileal chyme from pigs was assessed, using the cumulative gas production technique. Ingredients of the first experiment included gums, inulins, pectins, transgalacto-oligosaccharides, lactose and xylan. In the second experiment, a gum, pectin and transgalacto-oligosaccharides were added at different starting weights, to determine their effects on fermentation characteristics of chyme, in relation to differences in the carbohydrate concentrations. In comparison to fermentation of chyme alone, added carbohydrates led to higher total gas production (p < 0.05), faster maximum rate of gas production (except for xylan) (p < 0.05), and a decreased branched-chain fatty acids to straight chain fatty acids ratio (BCR) (p < 0.05). In the second experiment, for all carbohydrate ingredients, the BCR decreased with increasing starting weights (p < 0.05). If these supplemented dietary carbohydrates were to reach the terminal ileum of the living animal, carbohydrate fermentation in the large intestine could be stimulated, which is known to have beneficial effects on host health.  相似文献   

3.
The utilization of fructooligosaccharides (FOS) and inulin by 55 Bifidobacterium strains was investigated. Whereas FOS were fermented by most strains, only eight grew when inulin was used as the carbon source. Residual carbohydrates were analyzed by high-performance anion-exchange chromatography with pulsed amperometric detection after batch fermentation. A strain-dependent capability to degrade fructans of different lengths was observed. During batch fermentation on inulin, the short fructans disappeared first, and then the longer ones were gradually consumed. However, growth occurred through a single uninterrupted exponential phase without exhibiting polyauxic behavior in relation to the chain length. Cellular β-fructofuranosidases were found in all of the 21 Bifidobacterium strains tested. Four strains were tested for extracellular hydrolytic activity against fructans, and only the two strains which ferment inulin showed this activity. Batch cultures inoculated with human fecal slurries confirmed the bifidogenic effect of both FOS and inulin and indicated that other intestinal microbial groups also grow on these carbon sources. We observed that bifidobacteria grew by cross-feeding on mono- and oligosaccharides produced by primary inulin intestinal degraders, as evidenced by the high hydrolytic activity of fecal supernatants. FOS and inulin greatly affected the production of short-chain fatty acids in fecal cultures; butyrate was the major fermentation product on inulin, whereas mostly acetate and lactate were produced on FOS.  相似文献   

4.
The effect of pH and substrate dose on the fermentation profile of a number of commercial prebiotics was analysed in triplicate using stirred, pH and temperature controlled anaerobic batch culture fermentations, inoculated with a fresh faecal slurry from one of three healthy volunteers. Bacterial numbers were enumerated using fluorescence in situ hybridisation. The commercial prebiotics investigated were fructooligosaccharides (FOS), inulin, galactooligosaccharides (GOS), isomaltooligosaccharides (IMO) and lactulose. Two pH values were investigated, i.e. pH 6 and 6.8. Doses of 1% and 2% (w/v) were investigated, equivalent to approximately 4 and 8 g per day, respectively, in an adult diet. It was found that both pH and dose altered the bacterial composition. It was observed that FOS and inulin demonstrated the greatest bifidogenic effect at pH 6.8 and 1% (w/v) carbohydrate, whereas GOS, IMO and lactulose demonstrated their greatest bifidogenic effect at pH 6 and 2% (w/v) carbohydrate. From this we can conclude that various prebiotics demonstrate differing bifidogenic effects at different conditions in vitro.  相似文献   

5.
Bacteria growing in the human large intestine live in intimate association with the host and play an important role in host digestive processes, gut physiology, and metabolism. Fecal bacteria have been investigated extensively, but few studies have been done on biofilms that form on digestive wastes in the large bowel. The aims of this investigation were to investigate the composition and metabolic activities of bacterial communities that colonize the surfaces of food residues in fecal material, with respect to their role in the fermentation of complex carbohydrates. Fresh stools were obtained from 15 healthy donors, and food residues were separated by filtration. Adherent bacteria were removed by surfactant treatment for microbiological analysis and fermentation studies. Scanning electron microscopy and fluorescent in situ hybridization in conjunction with confocal laser scanning microscopy (CLSM) were used to visualize intact biofilms. Results showed that bacterial populations strongly adhering to particulate matter were phenotypically similar in composition to unattached communities, with bacteroides and bifidobacteria predominating. Biofilms comprised a mixture of living and dead bacteria, and CLSM showed that bifidobacteria in the biofilms occurred as isolated dispersed cells and in microcolonies near the interface with the substratum. Fermentation experiments with a variety of complex carbohydrates demonstrated that biofilm populations were more efficient in digesting polysaccharides, while nonadhering communities fermented oligosaccharides most rapidly. Acetate was the principal fermentation product formed by biofilm bacteria, whereas higher levels of butyrate were produced by nonadherent populations, showing that the two communities were metabolically distinct.  相似文献   

6.
Bacteria growing in the human large intestine live in intimate association with the host and play an important role in host digestive processes, gut physiology, and metabolism. Fecal bacteria have been investigated extensively, but few studies have been done on biofilms that form on digestive wastes in the large bowel. The aims of this investigation were to investigate the composition and metabolic activities of bacterial communities that colonize the surfaces of food residues in fecal material, with respect to their role in the fermentation of complex carbohydrates. Fresh stools were obtained from 15 healthy donors, and food residues were separated by filtration. Adherent bacteria were removed by surfactant treatment for microbiological analysis and fermentation studies. Scanning electron microscopy and fluorescent in situ hybridization in conjunction with confocal laser scanning microscopy (CLSM) were used to visualize intact biofilms. Results showed that bacterial populations strongly adhering to particulate matter were phenotypically similar in composition to unattached communities, with bacteroides and bifidobacteria predominating. Biofilms comprised a mixture of living and dead bacteria, and CLSM showed that bifidobacteria in the biofilms occurred as isolated dispersed cells and in microcolonies near the interface with the substratum. Fermentation experiments with a variety of complex carbohydrates demonstrated that biofilm populations were more efficient in digesting polysaccharides, while nonadhering communities fermented oligosaccharides most rapidly. Acetate was the principal fermentation product formed by biofilm bacteria, whereas higher levels of butyrate were produced by nonadherent populations, showing that the two communities were metabolically distinct.  相似文献   

7.
Wei Y  Yuan X  Shi X  Chu Y  Guo R 《Bioresource technology》2011,102(4):3805-3809
This study determined hydrogen production, volatile fatty acids (VFAs) generation and cellulose solubilisation from anaerobic dark fermentation of wheat stalk and showed the effect of different mixed microflora. The cumulative hydrogen yields of anaerobic digested activated sludge (AS)-inoculated and anaerobic digested dairy manure (DM)-inoculated system were 23.3 and 37.0 mL/g VS at 204 h, respectively. A modified Gompertz equation was able to adequately describe the production of hydrogen from the batch fermentation by both mixed microflora. During the process, acetate and butyrate accounted for more than 76.1% of total VFAs for both fermentations. The extent of cellulose solubilisation approached 46.6% and 75.2% for AS- and DM-inoculated fermentation, respectively. The X-ray diffraction (XRD) showed that the crystallinities of both fermented stalks were partly disrupted by the mixed microflora, and DM-inoculated fermentation had more disruption than AS-inoculated one.  相似文献   

8.
In this study, we evaluated the effectiveness of lake sediment as inoculum for hydrogen production through dark fermentation in a repeated batch process. In addition, we investigated the effect of heat treatment, applied to enrich hydrogen-producing bacteria, on the bacterial composition and metabolism. Denaturing gradient gel electrophoresis and molecular cloning, both performed using the 16S rDNA gene as target gene, were used to monitor the structure of the bacterial community. Hydrogen production and bacterial metabolism were analysed via gas chromatography and high-performance liquid chromatography. Both treated and non-treated inocula were able to produce high amounts of hydrogen. However, statistical analysis showed a clear difference in their bacterial composition and metabolism. The heat treatment favoured the growth of different Clostridia sp., in particular of Clostridium bifermentans, allowing the production of a constant amount of hydrogen over prolonged time. These cultures showed both butyrate and ethanol fermentation types. Absence of heat treatment allowed species belonging to the genera Bacillus, Sporolactobacillus and Massilia to outgrow Clostridia sp. with a reduction in hydrogen production and a significant metabolic change. Our data indicate that lake sediment harbours bacteria that can efficiently produce hydrogen over prolonged fermentation time. Moreover, we could show that the heat treatment stabilizes the bacterial community composition and the hydrogen production.  相似文献   

9.
Microbial catabolic capacity in digesta from the gastrointestinal tract of pigs fed either dry feed or fermented liquid feed (FLF) was determined with the PhenePlate multisubstrate system. The in vitro technique was modified to analyze the kinetics of substrate catabolism mediated by the standing stock of enzymes (potential rates of fermentation), allowing a quantitative evaluation of the dietary effect on the catabolic capacity of the microbiota. In total, the potential rates of fermentation were significantly reduced in digesta from the large intestine (cecum, P < 0.1; colon, P < 0.01; and rectum, P < 0.0001) of pigs fed FLF compared to pigs fed dry feed. No effect of diet was observed in the stomach (P = 0.71) or the distal part of the small intestine (P = 0.97). The highest rates of fermentation and the most significant effect of diet were observed for readily fermentable carbohydrates like maltose, sucrose, and lactose. Feeding FLF to pigs also led to a reduction in the large intestine of the total counts of anaerobic bacteria in general and lactic acid bacteria specifically, as well as of microbial activity, as determined by the concentration of ATP and short-chain fatty acids. The low-molecular-weight carbohydrates were fermented mainly to lactic acid in the FLF before being fed to the animals. This may have limited microbial nutrient availability in the digesta reaching the large intestine of pigs fed FLF and may have caused the observed reduction in activity and density of the cecal and colonic microbial population. On the other hand, feeding FLF to pigs reduced the viable counts of coliform bacteria (indicator of Escherichia coli and Salmonella spp.) most profoundly in the stomach and the distal part of the small intestine, probably due to the bactericidal effect of lactic acid and low pH. The results presented clearly demonstrate that feeding FLF to pigs had a great impact on the indigenous microbiota, as reflected in bacterial numbers, short-chain fatty acid concentration, and substrate utilization. However, completely different mechanisms may be involved in the proximal and the distal parts of the gastrointestinal tract. The present study illustrates the utility of the PhenePlate system for quantifying the catabolic capacity of the indigenous gastrointestinal tract microbiota.  相似文献   

10.
Traditional bread (khamir) was made from sorghum flour of two local varieties, Bayadh and Hamra. The bread was prepared by mixing the sorghum flour with water and spices (onion, garlic, lemon juice and fenugreek) in a 1:0.8 (w/w) ratio and fermented for 24 h at 30 degrees C. Two other fermentations were carried out using an inoculum from the previous fermentation. The micro-organisms were isolated from different plates and identified using different characterization systems. Both total bacterial populations and lactic acid bacteria increased with fermentation time and reached the highest number at 16 h (first fermentation) and at 8 h (second and third fermentation). The content of lactic acid was increased with time to reach 1.2%, but the increase was higher for the second and third fermentations (1.6% each). The pH dropped with time from 6.77 to 4.35 in the first fermentation and from 6.65 to 4.18, and 6.57-3.93, in the second and third fermentations, respectively. The microorganisms, which were isolated and characterized during the 24 h fermentation, included: bacteria (Pediococcus pentosaceus, Lactobacillus brevis, Lact. lactis subsp. lactis, Lact. cellobiosus, Klebsiella oxytoca, Kl. pneumoniae, Enterobacter aerogenes, Ent. sakazakii, Serratia marcescens and Ser. odourifera), moulds (Penicillium sp., Rhizopus sp., Aspergillus niger, Alternaria sp., Fusarium sp. and Mucor sp.) and yeasts (Candida parapsilosis, C. orvegnsis and Rhodotorula glutinis).  相似文献   

11.
The diversity of rhizobia associated with introduced and native Acacia species in Algeria was investigated from soil samples collected across seven districts distributed in arid and semi-arid zones. The in vitro tolerances of rhizobial strains to NaCl and high temperature in pure culture varied greatly regardless of their geographical and host plant origins but were not correlated with the corresponding edaphoclimatic characteristics of the sampling sites, as clearly demonstrated by principal component analysis. Based on 16S rRNA gene sequence comparisons, the 48 new strains isolated were ranked into 10 phylogenetic groups representing five bacterial genera, namely, Ensifer, Mesorhizobium, Rhizobium, Bradyrhizobium, and Ochrobactrum. Acacia saligna, an introduced species, appeared as the most promiscuous host because it was efficiently nodulated with the widest diversity of rhizobia taxa including both fast-growing ones, Rhizobium, Ensifer, and Mesorhizobium, and slow-growing Bradyrhizobium. The five other Acacia species studied were associated with fast-growing bacterial taxa exclusively. No difference in efficiency was found between bacterial taxa isolated from a given Acacia species. The tolerances of strains to salinity and temperature remains to be tested in symbiosis with their host plants to select the most adapted Acacia sp.-LNB taxa associations for further revegetation programs.  相似文献   

12.
The bacteria of the intestine have to cope with varying osmotic conditions in their ecosystem. In this in vitro study, the modified Hohenheim gas test (HGT) was used to determine fermentation activity and bacterial composition of pig's faecal microbial inoculum, when fermenting different carbohydrates (inulin, corn starch, potato starch, cellulose, pectin), under normal buffered and osmotic stress conditions (elevated medium salinity). After 24 h of fermentation, gas, ammonia and short-chain fatty acid (SCFA) production was measured, and the cell numbers of total eubacteria, Lactobacillus spp., Bifidobacterium spp. and enterobacteria were analysed, using real-time polymerase chain reaction. There was a significant reduction in gas production after 24 h when comparing osmotic stress conditions with normal buffered conditions, and there were also differences among carbohydrates under both conditions. The content of SCFA was significantly lower when comparing osmotic stress with normal buffered conditions. Under osmotic stress, inulin and corn starch increased (p < 0.05) cell numbers of total eubacteria, while Bifidobacterium spp. and enterobacteria were higher (p < 0.05) when corn starch and pectin were fermented, respectively, in comparison to the other carbohydrates. The in vitro system of the modified HGT appears to be suitable to scrutinise effects of carbohydrates on the metabolic activity and composition of the microbial community under osmotic stress conditions, as they might occur during situations of osmotic diarrhoea.  相似文献   

13.
In this study, the microbial ecology of three naturally fermented sausages produced in northeast Italy was studied by culture-dependent and -independent methods. By plating analysis, the predominance of lactic acid bacteria populations was pointed out, as well as the importance of coagulase-negative cocci. Also in the case of one fermentation, the fecal enterocci reached significant counts, highlighting their contribution to the particular transformation process. Yeast counts were higher than the detection limit (> 100 CFU/g) in only one fermented sausage. Analysis of the denaturing gradient gel electrophoresis (DGGE) patterns and sequencing of the bands allowed profiling of the microbial populations present in the sausages during fermentation. The bacterial ecology was mainly characterized by the stable presence of Lactobacillus curvatus and Lactobacillus sakei, but Lactobacillus paracasei was also repeatedly detected. An important piece of evidence was the presence of Lactococcus garvieae, which clearly contributed in two fermentations. Several species of Staphylococcus were also detected. Regarding other bacterial groups, Bacillus sp., Ruminococcus sp., and Macrococcus caseolyticus were also identified at the beginning of the transformations. In addition, yeast species belonging to Debaryomyces hansenii, several Candida species, and Willopsis saturnus were observed in the DGGE gels. Finally, cluster analysis of the bacterial and yeast DGGE profiles highlighted the uniqueness of the fermentation processes studied.  相似文献   

14.
Eight isonitrogenous (35% crude protein approximately) and isocaloric (4.2 kcal g(-1) approximately) diets were formulated including raw and fermented duckweed (Lemna polyrhiza) leaf meal at 10%, 20%, 30% and 40% levels. A particular bacterial strain (Bacillus sp.) isolated from carp (Cyprinus carpio) intestine and having extracellular amylolytic, cellulolytic, proteolytic and lipolytic activities was used for leaf meal fermentation for 15 days at 37 degrees C. The fibre content of leaf meal reduced from 11.0% to 7.5% and the antinutritional factors, tannin and phytic acid, were reduced from 1.0% to 0.02% and 1.23% to 0.09%, respectively after fermentation. However, the available reducing sugars, free amino acids and fatty acids increased in the fermented leaf meal. The response of rohu, Labeo rohita, fingerlings fed the experimental diets for 80 days was compared with fish fed a fish meal based reference diet. On the basis of growth response, food conversion ratio and protein efficiency ratio, 30% fermented Lemna leaf meal incorporated in the diet resulted in the best performance of rohu fingerlings. In general, growth and feed utilization efficiencies of fish fed fermented leaf meal containing diets were superior to those fed diets containing raw leaf meal. The apparent protein digestibility (APD) decreased with increasing levels of leaf meal irrespective of treatment. The APD for raw leaf meal was lower at all levels of inclusion in comparison to those for the fermented meals. The highest carcass protein and lipid deposition was recorded in fish fed the diet containing 30% fermented leaf meal. The results showed that fermented Lemna leaf meal can be incorporated into carp diets up to 30% level compared to 10% level of raw meal.  相似文献   

15.
Seven strains of Roseburia sp., Faecalibacterium prausnitzii, and Coprococcus sp. from the human gut that produce high levels of butyric acid in vitro were studied with respect to key butyrate pathway enzymes and fermentation patterns. Strains of Roseburia sp. and F. prausnitzii possessed butyryl coenzyme A (CoA):acetate-CoA transferase and acetate kinase activities, but butyrate kinase activity was not detectable either in growing or in stationary-phase cultures. Although unable to use acetate as a sole source of energy, these strains showed net utilization of acetate during growth on glucose. In contrast, Coprococcus sp. strain L2-50 is a net producer of acetate and possessed detectable butyrate kinase, acetate kinase, and butyryl-CoA:acetate-CoA transferase activities. These results demonstrate that different functionally distinct groups of butyrate-producing bacteria are present in the human large intestine.  相似文献   

16.
Sorghum flour obtained from Sudan was mixed with water in a 1:2 (wt/vol) ratio and fermented at 30°C for 24 h. The bacterial populations increased with fermentation time and reached a plateau at approximately 18 h. At the end of 24 h, sorghum batter pH had dropped from 5.95 to 3.95 and the batter had a lactic acid content of 0.80%. The microbial population during the 24 h of fermentation consisted of bacteria (Pediococcus pentosaceus, Lactobacillus confusus, Lactobacillus brevis, Lactobacillus sp., Erwinia ananas, Klebsiella pneumoniae, and Enterobacter cloacae), yeasts (Candida intermedia and Debaryomyces hansenii), and molds (Aspergillus sp., Penicillium sp., Fusarium sp., and Rhizopus sp.). P. pentosaceus was the dominant microorganism at the end of the 24-h fermentation. When three consecutive fermentations using an inoculum from the previous fermentation were carried out, the bacterial population increase plateaued at 9 h. The microbial populations in these fermentations were dominated by P. pentosaceus.  相似文献   

17.
This study examined the feasibility of producing hydrogen by direct fermentation of fodder maize, chicory fructooligosaccharides and perennial ryegrass (Lolium perenne) in batch culture (pH 5.2-5.3, 35 degrees C, heat-treated anaerobically digested sludge inoculum). Gas was produced from each substrate and contained up to 50-80% hydrogen during the peak periods of gas production with the remainder carbon dioxide. Hydrogen yields obtained were 62.4+/-6.1mL/g dry matter added for fodder maize, 218+/-28mL/g chicory fructooligosaccharides added, 75.6+/-8.8mL H(2)/g dry matter added for wilted perennial ryegrass and 21.8+/-8mL H(2)/g dry matter added for fresh perennial ryegrass. Butyrate, acetate and ethanol were the main soluble fermentation products. Hydrogen yields of 392-501m(3)/hectare of perennial ryegrass per year and 1060-1309m(3)/hectare of fodder maize per year can be obtained based on the UK annual yield per hectare of these crops. These results significantly extend the range of substrates that can be used for hydrogen production without pre-treatment.  相似文献   

18.
Yun JS  Wee YJ  Kim JN  Ryu HW 《Biotechnology letters》2004,26(20):1613-1616
Rice and wheat brans, without additional nutrients and hydrolyzed by alpha-amylase and amyloglucosidase, were fermented to DL-lactic acid using a newly isolated strain of Lactobacillus sp. RKY2. In batch fermentations at 36 degrees C and pH 6, the amount of lactic acid in fermentation broth reached 129 g l(-1) by supplementation of rice bran with whole rice flour. The maximum productivity was 3.1 g lactic acid l(-1) h(-1) in rice bran medium supplemented with whole rice flour or whole wheat flour.  相似文献   

19.
The gut anaerobic fungi,Neocallimastix hurleyensis and aOrpinomyces sp., were grown in 100 mL batch and continuous-flow cultures on wheat straw at a concentration of 80 g dry matter/L of culture liquid. In batch cultures,N. hurleyensis and Orpinomyces sp. degraded only ca. 9% and 5% of the wheat straw, respectively. In continuous-flow cultures, however, the two fungi degraded 52-56% of the apparent dry matter of wheat straw. Both fungi were able to produce greater quantities (up to x 30) of cell-wall degrading enzymes (CMCase, xylanase, beta-glucosidase and beta-xylosidase) in continuous-flow cultures than in the corresponding batch cultures. Increasing the dilution rate in continuous-flow culture resulted in the production of increased enzyme activity for all the measured cell-wall degrading enzymes, with proportional relationships between dilution rate and the cumulative activities of beta-glucosidase and beta-xylosidase. Dilution rates, however, had no consistent effect on the cumulative production of the fermentation end-products, acetate, formate, D- and L-lactate from both fungi. In addition to acetate and formate,N. hurleyens is produced D- and L-lactate in both batch and continuous-flow cultures, whereas only trace amounts of L-lactate were detected in the Orpinomyces sp. cultures.  相似文献   

20.
Human consumption of soy-derived products has been limited by the presence of non-digestible oligosaccharides (NDO), such as the alpha-galactooligosaccharides raffinose and stachyose. Most mammals, including man, lack pancreatic alpha-galactosidase (alpha-Gal), which is necessary for the hydrolysis of these sugars. However, such NDO can be fermented by gas-producing microorganisms present in the cecum and large intestine, which in turn can induce flatulence and other gastrointestinal disorders in sensitive individuals. The use of microorganisms expressing alpha-Gal is a promising solution to the elimination of NDO before they reach the large intestine. In the present study, lactic acid bacteria engineered to degrade NDO have been constructed and are being used as a tool to evaluate this solution. The alpha-Gal structural genes from Lactobacillus plantarum ATCC8014 (previously characterized in our laboratory) and from guar have been cloned and expressed in Lactococcus lactis. The gene products were directed to different bacterial compartments to optimize their possible applications. The alpha-Gal-producing strains are being evaluated for their efficiency in degrading raffinose and stachyose: i) in soymilk fermentation when used as starters and ii) in situ in the upper gastrointestinal tract when administered to animals orally, as probiotic preparations. The expected outcomes and possible complications of this project are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号