首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA topoisomerase II is an essential enzyme that releases a topological strain in DNA by introduction of transient breaks in one DNA helix through which another helix is passed. While changing DNA topology, ATP is required to drive the enzyme through a series of conformational changes dependent on interdomain communication. We have characterized a human topoisomerase IIalpha enzyme with a two-amino acid insertion at position 351 in the transducer domain. The mutation specifically abolishes the DNA strand passage event of the enzyme, probably because of a sterical hindrance of T-segment transport. Thus, the enzyme fails to decatenate and relax DNA, even though it is fully capable of ATP hydrolysis, closure of the N-terminal clamp, and DNA cleavage. The cleavage activity is increased, suggesting that the transducer domain has a role in regulating DNA cleavage. Furthermore, the enzyme has retained a tendency to increase DNA cleavage upon nucleotide binding and also responds to DNA with elevated ATP hydrolysis. However, the DNA-mediated increase in ATP hydrolysis is lower than that obtained with the wild-type enzyme but similar to that of a cleavage-deficient topoisomerase IIalpha enzyme. Our results strongly suggest that the strand passage event is required for efficient DNA stimulation of topoisomerase II-mediated ATP hydrolysis, whereas the stimulation occurs independent of the DNA cleavage reaction per se. A comparison of the strand passage deficient-enzyme described here and the cleavage-deficient enzyme may have applications in other studies where a clear distinction between strand passage and topoisomerase II-mediated DNA cleavage is desirable.  相似文献   

2.
The gamma complex couples ATP hydrolysis to the loading of beta sliding clamps onto DNA for processive replication. The gamma complex structure shows that the clamp loader subunits are arranged as a circular heteropentamer. The three gamma motor subunits bind ATP, the delta wrench opens the beta ring, and the delta' stator modulates the delta-beta interaction. Neither delta nor delta' bind ATP. This report demonstrates that the delta' stator contributes a catalytic arginine for hydrolysis of ATP bound to the adjacent gamma(1) subunit. Thus, the delta' stator contributes to the motor function of the gamma trimer. Mutation of arginine 169 of gamma, which removes the catalytic arginines from only the gamma(2) and gamma(3) ATP sites, abolishes ATPase activity even though ATP site 1 is intact and all three sites are filled. This result implies that hydrolysis of the three ATP molecules occurs in a particular order, the reverse of ATP binding, where ATP in site 1 is not hydrolyzed until ATP in sites 2 and/or 3 is hydrolyzed. Implications of these results to clamp loaders of other systems are discussed.  相似文献   

3.
Catalysis of ATP hydrolysis by two NH(2)-terminal fragments of yeast DNA topoisomerase II was studied in the absence and presence of DNA, and in the absence and presence of inhibitor ICRF-193. The results indicate that purified Top2-(1-409), a fragment containing the NH(2)-terminal 409 amino acids of the yeast enzyme, is predominantly monomeric, with a low level of ATPase owing to weak association of two monomers to form a catalytically active dimer. The ATPase activity of Top2-(1-409) is independent of DNA in a buffer containing 100 mM NaCl, in which intact yeast DNA topoisomerase II exhibits robust DNA-dependent ATPase and DNA transport activities. Purified Top2-(1-660), a fragment containing the NH(2)-terminal 660 amino acid of the yeast enzyme, appears to be dimeric in the absence or presence of DNA, and the ATPase activity of the protein is significantly stimulated by DNA. These results are consistent with a model in which binding of an intact DNA topoisomerase II to DNA places the various subfragments of the enzyme in a way that makes the intramolecular dimerization of the ATPase domains more favorable. We believe that this alignment of subfragments is mainly achieved through the binding of the enzyme to the DNA segment within which the enzyme makes transient breaks. The ATPase activity of Top2-(1-409) is inhibited by ICRF-193, suggesting that the bisdioxopiperazine class of DNA topoisomerase II inhibitors directly interacts with the paired ATPase domains of the enzyme.  相似文献   

4.
Hsp90, a dimeric ATP-dependent molecular chaperone, is required for the folding and activation of numerous essential substrate "client" proteins including nuclear receptors, cell cycle kinases, and telomerase. Fundamental to its mechanism is an ensemble of dramatically different conformational states that result from nucleotide binding and hydrolysis and distinct sets of interdomain interactions. Previous structural and biochemical work identified a conserved arginine residue (R380 in yeast) in the Hsp90 middle domain (MD) that is required for wild type hydrolysis activity in yeast, and hence proposed to be a catalytic residue. As part of our investigations on the origins of species-specific differences in Hsp90 conformational dynamics we probed the role of this MD arginine in bacterial, yeast, and human Hsp90s using a combination of structural and functional approaches. While the R380A mutation compromised ATPase activity in all three homologs, the impact on ATPase activity was both variable and much more modest (2-7 fold) than the mutation of an active site glutamate (40 fold) known to be required for hydrolysis. Single particle electron microscopy and small-angle X-ray scattering revealed that, for all Hsp90s, mutation of this arginine abrogated the ability to form the closed "ATP" conformational state in response to AMPPNP binding. Taken together with previous mutagenesis data exploring intra- and intermonomer interactions, these new data suggest that R380 does not directly participate in the hydrolysis reaction as a catalytic residue, but instead acts as an ATP-sensor to stabilize an NTD-MD conformation required for efficient ATP hydrolysis.  相似文献   

5.
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R ( recA2201 ) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo . We have combined the K72R variant of RecA with another mutation, RecA E38K ( recA730 ). In vitro , the double mutant RecA E38K/K72R ( recA730,2201 ) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro .  相似文献   

6.
Tryptic digestion of 21S outer arm dynein from sea urchin sperm flagella in the presence of ATP (or ADP) and vanadate produced quite different polypeptides from those obtained in the absence of ATP (ADP) and/or vanadate (Inaba and Mohri (1989) J. Biol. Chem. 264, 8384-8388). The 21S dynein heavy chains were consistently digested into 165- and 135-kDa polypeptides in the absence of both ATP (ADP) and vanadate. In the presence of 2 mM ADP and 100 microM vanadate, 300-kDa polypeptide, which appeared to be a precursor of 165- and 135-kDa polypeptides, became less accessible to trypsin, and 165- and 135-kDa polypeptides were digested into 150-/148-kDa and 96-kDa polypeptides, respectively. Quantitative analysis of the degradation of 165- and 135-kDa polypeptides showed that the conformations of these polypeptides change remarkably in the presence of ATP (ADP) and vanadate, and slightly in the presence of ATP gamma S. Photoaffinity labeling with 8-azidoadenosine 5'-triphosphate and vanadate-mediated photocleavage of dynein heavy chains revealed that both adenine- and gamma-Pi-binding sites were located on 165- and 150-/148-kDa polypeptides, but not on 135-kDa polypeptide. These results suggest that the conformational change occurring in the 165-kDa region on binding ATP spreads to the 135-kDa region and causes the conformational change of the 135-kDa region.  相似文献   

7.
Seybert A  Wigley DB 《The EMBO journal》2004,23(6):1360-1371
Circular clamps are utilised by replicative polymerases to enhance processivity. The topological problem of loading a toroidal clamp onto DNA is overcome by ATP-dependent clamp loader complexes. Different organisms use related protein machines to load clamps, but the mechanisms by which they utilise ATP are surprisingly different. Using mutant clamp loaders that are deficient in either ATP binding or hydrolysis in different subunits, we show how the different subunits of an archaeal clamp loader use ATP binding and hydrolysis in distinct ways at different steps in the loading process. Binding of nucleotide by the large subunit and three of the four small subunits is sufficient for clamp loading. However, ATP hydrolysis by the small subunits is required for release of PCNA to allow formation of the complex between PCNA and the polymerase, while hydrolysis by the large subunit is required for catalytic clamp loading.  相似文献   

8.
9.
The chaperoning activity of the heat shock protein hsp90 is directed, in part, by the binding and hydrolysis of ATP and also by association with co-chaperone proteins. One co-chaperone, p23, binds to hsp90 only when hsp90 is in a conformation induced by the binding of ATP. Once formed, the p23-hsp90 complex is very stable upon the removal of ATP and dissipates at 30 degrees with a half-life of about 45 min. This was shown to be due to the high stability of the ATP-induced state of hsp90, not to the rate of p23 dissociation. Further stabilization of this ATP-induced state is achieved by including molybdate or by use of the ATP analogue ATPgammaS. This conformational state of hsp90 is correlated with the tight binding of ADP resulting from hydrolysis of bound ATP. Both p23 and molybdate enhance and stabilize the nucleotide-bound state of hsp90, and this state is maximized by the presence of both agents. These results can be explained in a model where the binding of ATP induces a conformational transition in hsp90 that traps the nucleotide and is committed to ATP hydrolysis. p23 specifically recognizes this state and may also facilitate subsequent steps in the chaperoning cycle.  相似文献   

10.
The catalytic activity of topoisomerase II is stimulated approximately 2-3-fold following phosphorylation by casein kinase II (Ackerman, P., Glover, C. V. C., and Osheroff, N. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3164-3168). In order to delineate the mechanism by which the activity of the enzyme is enhanced, the effects of casein kinase II-mediated phosphorylation on the individual steps of the catalytic cycle of Drosophila topoisomerase II were characterized. Phosphorylation did not affect reaction steps that preceded hydrolysis of the enzyme's high energy ATP cofactor. This included enzyme-DNA binding, pre-strand passage DNA cleavage/religation, the double-stranded DNA passage event, and post-strand passage DNA cleavage/religation. In contrast, the rate of topoisomerase II-mediated ATP hydrolysis was stimulated 2.7-fold following phosphorylation by casein kinase II. Since ATP hydrolysis is a prerequisite for enzyme turnover, it is concluded that phosphorylation modulates the overall catalytic activity of topoisomerase II by stimulating the enzyme's ATPase activity.  相似文献   

11.
ATP hydrolysis by the cystic fibrosis transmembraneconductance regulator (CFTR)Cl channel predicts thatenergy from hydrolysis might cause asymmetric transitions in thegating cycle. We found that 3-(N-morpholino)propanesulfonic acid (MOPS) blocked the open channel by binding to a site 50% of theway through the electrical field. Block by MOPS revealed two distinctstates, O1 and O2, which showed a strong asymmetry during bursts ofactivity; the first opening in a burst was in the O1 state and the lastwas in the O2 state. Addition of a nonhydrolyzable nucleosidetriphosphate prevented the transition to the O2 state and prolonged theO1 state. These data indicate that ATP hydrolysis by thenucleotide-binding domains drives a series of asymmetric transitions inthe gating cycle. They also indicate that ATP hydrolysis changes theconformation of the pore, thereby altering MOPS binding.

  相似文献   

12.
The beta sliding clamp encircles DNA and enables processive replication of the Escherichia coli genome by DNA polymerase III holoenzyme. The clamp loader, gamma complex, assembles beta around DNA in an ATP-fueled reaction. Previous studies have shown that gamma complex opens the beta ring and also interacts with DNA on binding ATP. Here, a rapid kinetic analysis demonstrates that gamma complex hydrolyzes two ATP molecules sequentially when placing beta around DNA. The first ATP is hydrolyzed fast, at 25-30 s(-1), while the second ATP hydrolysis is limited to the steady-state rate of 2 s(-1). This step-wise reaction depends on both primed DNA and beta. DNA alone promotes rapid hydrolysis of two ATP molecules, while beta alone permits hydrolysis of only one ATP. These results suggest that beta inserts a slow step between the two ATP hydrolysis events in clamp assembly, during which the clamp loader may perform work on the clamp. Moreover, one ATP hydrolysis is sufficient for release of beta from the gamma complex. This implies that DNA-dependent hydrolysis of the other ATP is coupled to a separate function, perhaps involving work on DNA. A model is presented in which sequential ATP hydrolysis drives distinct events in the clamp-assembly pathway. We also discuss underlying principles of this step-wise mechanism that may apply to the workings of other ATP-fueled biological machines.  相似文献   

13.
It has been known for some time that ATP inhibits the DNA relaxation activity of human DNA topoisomerase I. However, the underlying mechanism of this inhibitory effect remains largely unknown. Using filter binding assays, the binding of human DNA topoisomerase I to DNA was decreased in the presence of ATP. This result suggests that the inhibition of DNA relaxation activity of human DNA topoisomerase I by ATP is at the binding step rather than at the nicking or resealing step. DNA topoisomerase I cleavage assay further supports this notion. ATP-agarose binding and UV cross-linking assays also demonstrate that ATP directly and specifically binds human DNA topoisomerase I. To address whether the ATP binding results in conformational changes in human DNA topoisomerase I, various proteases were employed for detecting potential protein conformational changes. Our results indicated that the proteolytic susceptibilities of trypsin and chymotrypsin were altered in the presence of ATP. The result suggests that the conformation of human DNA topoisomerase I was altered upon ATP binding. In addition, the binding between ATP and human DNA topoisomerase I was also reduced by increasing concentrations of DNA. Our data suggests that human DNA topoisomerase I exhibits at least two incompatible conformations. One conformation is in the form of a topoisomerase I-ATP complex, which inhibits DNA relaxation activity of human DNA topoisomerase I, and the other, a topoisomerase I-DNA complex, which exerts DNA relaxation activity. Our studies identify the role of ATP in the regulation of human DNA topoisomerase I and provide a substantial implication of how human DNA topoisomerase I compromises its versatile functions.  相似文献   

14.
DNA topoisomerase II is an essential nuclear enzyme for proliferation of eukaryotic cells and plays important roles in many aspects of DNA processes. In this report, we have demonstrated that the catalytic activity of topoisomerase IIalpha, as measured by decatenation of kinetoplast DNA and by relaxation of negatively supercoiled DNA, was stimulated approximately 2-3-fold by the tumor suppressor p53 protein. In order to determine the mechanism by which p53 activates the enzyme, the effects of p53 on the topoisomerase IIalpha-mediated DNA cleavage/religation equilibrium were assessed using the prototypical topoisomerase II poison, etoposide. p53 had no effect on the ability of the enzyme to make double-stranded DNA break and religate linear DNA, indicating that the stimulation of the enzyme catalytic activity by p53 was not due to alteration in the formation of covalent cleavable complexes formed between topoisomerase IIalpha and DNA. The effects of p53 on the catalytic inhibition of topoisomerase IIalpha were examined using a specific catalytic inhibitor, ICRF-193, which blocks the ATP hydrolysis step of the enzyme catalytic cycle. Clearly manifested in decatenation and relaxation assays, p53 reduced the catalytic inhibition of topoisomerase IIalpha by ICRF-193. ATP hydrolysis assays revealed that the ATPase activity of topoisomerase IIalpha was specifically enhanced by p53. Immunoprecipitation experiments revealed that p53 physically interacts with topoisomerase IIalpha to form molecular complexes without a double-stranded DNA intermediary in vitro. To investigate whether p53 stimulates the catalytic activity of topoisomerase II in vivo, we expressed wild-type and mutant p53 in Saos-2 osteosarcoma cells lacking functional p53. Wild-type, but not mutant, p53 stimulated topoisomerase II activity in nuclear extract from these transfected cells. Our data propose a new role for p53 to modulate the catalytic activity of topoisomerase IIalpha. Taken together, we suggest that the p53-mediated response of the cell cycle to DNA damage may involve activation of topoisomerase IIalpha.  相似文献   

15.
Type II DNA topoisomerases mediate the passage of one DNA duplex through a transient break in another, an event essential for chromosome segregation and cell viability. The active sites of the type II topoisomerase dimer associate covalently with the DNA break-points and must separate by at least the width of the second DNA duplex to accommodate transport. A new structure of the Saccharomyces cerevisiae topoisomerase II DNA-binding and cleavage core suggests that in addition to conformational changes in the DNA-opening platform, a dramatic reorganization of accessory domains may occur during catalysis. These conformational differences have implications for both the DNA-breaking and duplex-transport events in the topo II reaction mechanism, suggest a mechanism by which two distinct drug-resistance loci interact, and illustrate the scope of structural changes in the cycling of molecular machines.  相似文献   

16.
A brief summary of the factors that control synthesis and hydrolysis of ATP by the mitochondrial H+-ATP synthase is made. Particular emphasis is placed on the role of the natural ATPase inhibitor protein. It is clear from the existing data obtained with a number of agents that there is no correlation between variations of the rate of ATP hydrolysis and ATP synthesis as driven by respiration. The mechanism by which each condition differentially affects the two activities is not entirely known. For the case of the natural ATPase inhibitor protein, it appears that the protein controls the kinetics of the enzyme. This control seems essential for achieving maximal accumulation of ATP during electron transport in systems that contain relatively high concentrations of ATP.  相似文献   

17.
ATP-dependent drug transport by human P-glycoprotein (Pgp, ABCB1) involves a coordinated communication between its drug-binding site (substrate site) and the nucleotide binding/hydrolysis domain (ATP sites). It has been demonstrated that the two ATP sites of Pgp play distinct roles within a single catalytic turnover; whereas ATP binding or/and hydrolysis by one drives substrate translocation and dissociation, the hydrolytic activity of the other resets the transporter for the subsequent cycle (Sauna, Z. E., and Ambudkar, S. V. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 2515-2520; Sauna, Z. E., and Ambudkar, S. V. (2001) J. Biol. Chem. 276, 11653-11661). Trapping of ADP (or 8-azido-ADP) and vanadate (ADP.Vi or 8-azido-ADP.Vi) at the catalytic site, following nucleotide hydrolysis, markedly reduces the affinity of Pgp for its transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP), resulting in dissociation of the latter. Regeneration of the [125I]IAAP site requires an additional round of nucleotide hydrolysis. In this study, we demonstrate that certain thioxanthene-based allosteric modulators, such as cis-(Z)-flupentixol and its closely related analogs, induce regeneration of [125I]IAAP binding to vanadate-trapped (or fluoroaluminate-trapped) Pgp without any further nucleotide hydrolysis. Regeneration was facilitated by dissociation of the trapped nucleotide and vanadate. Once regenerated, the substrate site remains accessible to [125I]IAAP even after removal of the modulator from the medium, suggesting a modulator-induced relaxation of a constrained transition state conformation. Consistent with this, limited trypsin digestion of vanadate-trapped Pgp shows protection by cis-(Z)-flupentixol of two Pgp fragments (approximately 60 kDa) recognizable by a polyclonal antiserum specific for the NH2-terminal half. No regeneration was observed in the Pgp mutant F983A that is impaired in modulation by flupentixols, indicating involvement of the allosteric modulator site in the phenomenon. In summary, the data demonstrate that in the nucleotide-trapped low affinity state of Pgp, the allosteric site remains accessible and responsive to modulation by flupentixol (and its closely related analogs), which can reset the high affinity state for [125I]IAAP binding without any further nucleotide hydrolysis.  相似文献   

18.
During the ATP hydrolysis cycle of the Dictyostelium myosin II motor domain, two conserved alpha-helices, the SH1/SH2 helix and the relay helix, rotate in a coordinated way to induce the swing motion of the converter domain. A network of hydrophobic and ionic interactions in these two helices and the converter may ensure that the motions of these helices are effectively transmitted to the converter. To examine the roles of these interactions in the ATPase-dependent converter swing, we disrupted two conserved hydrophobic linkages among them by means of a point mutation (I499A or F692A). The resulting mutations induced only limited changes in the kinetic parameters of ATP hydrolysis, except for a marked increase of basal MgATPase activity. However, the mutant myosins completely lost their in vitro and in vivo motor functions. Measurements of the intrinsic tryptophan fluorescence and the GFP-based FRET revealed that the converter domain of these mutants did not swing during steady-state ATP hydrolysis or in the presence of tightly trapped Mg.ADP.V(i), which shows that the point mutations induced the uncoupling of the converter swing and ATP hydrolysis cycle. These results highlight the importance of these hydrophobic linkages for transmitting the coordinated twist motions of the helices to the converter as well as the requirement of this converter swing for force generation.  相似文献   

19.
In the monomeric actin crystal structure, the positions of a highly organized network of waters are clearly visible within the active site. However, the recently proposed models of filamentous actin (F-actin) did not extend to including these waters. Since the water network is important for ATP hydrolysis, information about water position is critical to understanding the increased rate of catalysis upon filament formation. Here, we show that waters in the active site are essential for intersubdomain rotational flexibility and that they organize the active-site structure. Including the crystal structure waters during simulation setup allows us to observe distinct changes in the active-site structure upon the flattening of the actin subunit, as proposed in the Oda model for F-actin. We identify changes in both protein position and water position relative to the phosphate tail that suggest a mechanism for accelerating the rate of nucleotide hydrolysis in F-actin by stabilizing charge on the β-phosphate and by facilitating deprotonation of catalytic water.  相似文献   

20.
Onishi H  Mochizuki N  Morales MF 《Biochemistry》2004,43(13):3757-3763
Myosin is an ATP-hydrolyzing motor that is critical in muscle contraction. It is well established that in the hydrolysis that it catalyzes a water molecule attacks the gamma-phosphate of an ATP bound to its active site, but the details of these events have remained obscure. This is mainly because crystallographic search has not located an obvious catalytic base near the vulnerable phosphate. Here we suggest a means whereby this dilemma is probably overcome. It has been shown [Fisher, A. J., et al. (1995) Biochemistry 34, 8960-8972; Smith, C. A., and Rayment, I. (1996) Biochemistry 35, 5404-5417] that in an early event, Arg-247 and Glu-470 come together into a "salt-bridge". We suggest that in doing so they also position and orient two contiguous water molecules; one of these becomes the lytic water, perfectly poised to attack the bound gamma-phosphorus. Its hydroxyl moiety attacks the phosphorus, and the resulting proton transfers to the second water, converting it into a hydronium ion (as is experimentally observed). It is shown in this article how these central events of the catalysis are consistent with the behavior of several residues of the neighboring region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号