首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grimontia hollisae, formerly Vibrio hollisae, produces both smooth and rugose colonial variants. The rugose colony phenotype is characterized by wrinkled colonies producing copious amounts of exopolysaccharide. Cells from a rugose colony grown at 30°C form rugose colonies, while the same cells grown at 37°C form smooth colonies, which are characterized by a nonwrinkled, uncrannied appearance. Stress response studies revealed that after exposure to bleach for 30 min, rugose survivors outnumbered smooth survivors. Light scatter information obtained by flow cytometry indicated that rugose cells clumped into clusters of three or more cells (average, five cells) and formed two major clusters, while smooth cells formed only one cluster of single cells or doublets. Fluorescent lectin-binding flow cytometry studies revealed that the percentages of rugose cells that bound either wheat germ agglutinin (WGA) or Galanthus nivalis lectin (GNL) were greater than the percentages of smooth cells that bound the same lectins (WGA, 35% versus 3.5%; GNL, 67% versus 0.21%). These results indicate that the rugose exopolysaccharide consists partially of N-acetylglucosamine and mannose. Rugose colonies produced significantly more biofilm material than did smooth colonies, and rugose colonies grown at 30°C produced more biofilm material than rugose colonies grown at 37°C. Ultrastructurally, rugose colonies show regional cellular differentiation, with apical and lateral colonial regions containing cells embedded in a matrix stained by Alcian Blue. The cells touching the agar surface are packed tightly together in a palisade-like manner. The central region of the colony contains irregularly arranged, fluid-filled spaces and loosely packed chains or arrays of coccoid and vibrioid cells. Smooth colonies, in contrast, are flattened, composed of vibrioid cells, and lack distinct regional cellular differences. Results from suckling mouse studies showed that both orally fed rugose and smooth variants elicited significant, but similar, amounts of fluid accumulated in the stomach and intestines. These observations comprise the first report of expression and characterization of rugosity by G. hollisae and raise the possibility that expression of rugose exopolysaccharide in this organism is regulated at least in part by growth temperature.  相似文献   

2.
3.
The rugose colonial variant of Vibrio cholerae O1 El Tor produces an exopolysaccharide (EPS(ETr)) that enables the organism to form a biofilm and to resist oxidative stress and the bactericidal action of chlorine. Transposon mutagenesis of the rugose variant led to the identification of vpsR, which codes for a homologue of the NtrC subclass of response regulators. Targeted disruption of vpsR in the rugose colony genetic background yielded a nonreverting smooth-colony morphotype that produced no detectable EPS(ETr) and did not form an architecturally mature biofilm. Analysis of two genes, vpsA and vpsL, within the vps cluster of EPS(ETr) biosynthesis genes revealed that their expression is induced above basal levels in the rugose variant, compared to the smooth colonial variant, and requires vpsR. These results show that VpsR functions as a positive regulator of vpsA and vpsL and thus acts to positively regulate EPS(ETr) production and biofilm formation.  相似文献   

4.
5.
Vibrio cholerae, the causative agent of cholera, can undergo phenotypic variation generating rugose and smooth variants. The rugose variant forms corrugated colonies and well-developed biofilms and exhibits increased levels of resistance to several environmental stresses. Many of these phenotypes are mediated in part by increased expression of the vps genes, which are organized into vps-I and vps-II coding regions, separated by an intergenic region. In this study, we generated in-frame deletions of the five genes located in the vps intergenic region, termed rbmB to -F (rugosity and biofilm structure modulators B to F) in the rugose genetic background, and characterized the mutants for rugose colony development and biofilm formation. Deletion of rbmB, which encodes a protein with low sequence similarity to polysaccharide hydrolases, resulted in an increase in colony corrugation and accumulation of exopolysaccharides relative to the rugose variant. RbmC and its homolog Bap1 are predicted to encode proteins with carbohydrate-binding domains. The colonies of the rbmC bap1 double deletion mutant and bap1 single deletion mutant exhibited a decrease in colony corrugation. Furthermore, the rbmC bap1 double deletion mutant was unable to form biofilms at the air-liquid interface after 2 days, while the biofilms formed on solid surfaces detached readily. Although the colony morphology of rbmDEF mutants was similar to that of the rugose variant, their biofilm structure and cell aggregation phenotypes were different than those of the rugose variant. Taken together, these results indicate that vps intergenic region genes encode proteins that are involved in biofilm matrix production and maintenance of biofilm structure and stability.  相似文献   

6.
Phase variation in the Gram-negative human pathogen Vibrio vulnificus involves three colonial morphotypes- smooth opaque colonies due to production of capsular polysaccharide (CPS), smooth translucent colonies as the result of little or no CPS expression, and rugose colonies due to production of a separate extracellular polysaccharide (EPS), which greatly enhances biofilm formation. Previously, it was shown that the brp locus, which consists of nine genes arranged as an operon, is up-regulated in rugose strains in a c-di-GMP-dependent manner, and that plasmid insertions into the locus resulted in loss of rugosity and efficient biofilm production. Here, we have used non-polar mutagenesis to assess the involvement of individual brp genes in production of EPS and related phenotypes. Inactivation of genes predicted to be involved in various stages of EPS biosynthesis eliminated both the rugose colonial appearance and production of EPS, while knockout of a predicted flippase function involved in EPS transport resulted in a dry, lightly striated phenotype, which was associated with a reduction of brp-encoded EPS on the cell surface. All brp mutants retained the reduced motility characteristic of rugose strains. Lastly, we provide evidence that the brp locus is highly prevalent among strains of V. vulnificus.  相似文献   

7.
Cyclic di-guanylic acid (c-diGMP) is a second messenger that modulates the cell surface properties of several microorganisms. Concentrations of c-diGMP in the cell are controlled by the opposing activities of diguanylate cyclases and phosphodiesterases, which are carried out by proteins harbouring GGDEF and EAL domains respectively. In this study, we report that the cellular levels of c-diGMP are higher in the Vibrio cholerae rugose variant compared with the smooth variant. Modulation of cellular c-diGMP levels by overexpressing proteins with GGDEF or EAL domains increased or decreased colony rugosity respectively. Several genes encoding proteins with either GGDEF or EAL domains are differentially expressed between the two V. cholerae variants. The generation and characterization of null mutants of these genes (cdgA-E, rocS and mbaA) revealed that rugose colony formation, exopolysaccharide production, motility and biofilm formation are controlled by their action. Furthermore, epistasis analysis suggested that cdgC, rocS and mbaA act in convergent pathways to regulate the phenotypic properties of the rugose and smooth variants, and are part of the VpsR, VpsT and HapR signal transduction pathway.  相似文献   

8.
Rugose phenotypes, such as those observed in Vibrio cholerae, have increased resistance to chlorine, oxidative stress, and complement-mediated killing. In this study we identified and defined a rugose phenotype in Salmonella enterica serovar Typhimurium DT104 and showed induction only on certain media at 25 degrees C after 3 days of incubation. Incubation at 37 degrees C resulted in the appearance of the smooth phenotype. Observation of the ultrastructure of the rugose form and a stable smooth variant (Stv), which was isolated following a series of passages of the rugose cells, revealed extracellular substances only in cells from the rugose colony. Observation of the extracellular substance by scanning electron microscopy (SEM) was correlated with the appearance of corrugation during development of rugose colony morphology over a 4-day incubation period at 25 degrees C. In addition, the cells also formed a pellicle in liquid broth, which was associated with the appearance of interlacing slime and fibrillar structures, as observed by SEM. The pellicle-forming cells were completely surrounded by capsular material, which bound cationic ferritin, thus indicating the presence of an extracellular anionic component. The rugose cells, in contrast to Stv, showed resistance to low pH and hydrogen peroxide and an ability to form biofilms. Based on these results and analogy to the rugose phenotype in V. cholerae, we propose a possible role for the rugose phenotype in the survival of S. enterica serovar Typhimurium DT104.  相似文献   

9.
Vibrio cholerae can shift to a "rugose" phenotype, thereby producing copious exopolysaccharide (EPS), which promotes its environmental survival and persistence. We report conditions that promote high-frequency rugose EPS production (HFRP), whereby cells switch at high frequency (up to 80%) to rugose EPS production. HFRP appeared to be more common in clinical strains, as HFRP was found in 6 of 19 clinical strains (32%) (including classical, El Tor, and non-O1 strains) but in only 1 of 16 environmental strains (6%). Differences were found between strains in rugose colony morphology, conditions promoting HFRP, the frequency of rugose-to-smooth (R-S) cell reversion, and biofilm formation. We propose that rugose EPS and HFRP provide an evolutionary and adaptive advantage to specific epidemic V. cholerae strains for increased persistence in the environment.  相似文献   

10.
The D values of Yersinia enterocolitica strains IP134, IP107, and WA, irradiated at 25 degrees C in Trypticase soy broth, ranged from 9.7 to 11.8 krad. When irradiated in ground beef at 25 and -30 degrees C, the D value of strain IP107 was 19.5 and 38.8 krad, respectively. Cells suspended in Trypticase soy broth were more sensitive to storage at -20 degrees C than those mixed in ground beef. The percentages of inactivation and of injury (inability to form colonies in the presence of 3.0% NaCl) of cells stored in ground beef for 10 days at -20 degrees C were 70 and 23%, respectively. Prior irradiation did not alter the cell's sensitivity to storage at -20 degrees C, nor did storage at -20 degrees C alter the cell's resistance to irradiation at 25 degrees C. Added NaCl concentrations of up to 4.0% in Trypticase soy agar (TSA) (which contains 0.5% NaCl) had little effect on colony formation at 36 degrees C of unirradiated Y. enterocolitica. With added 4.0% NaCl, 79% of the cells formed colonies at 36 degrees C; with 5.0% NaCl added, no colonies were formed. Although 2.5% NaCl added to ground beef did not sensitize Y. enterocolitica cells to irradiation, when added to TSA it reduced the number of apparent radiation survivors. Cells uninjured by irradiation formed colonies on TSA when incubated at either 36 or 5 degrees C. More survivors of an exposure to 60 krad were capable of recovery and forming colonies on TSA when incubated at 36 degrees C for 1 day than at 5 degrees C for 14 days. This difference in count was considered a manifestation of injury to certain survivors of irradiation.  相似文献   

11.
Chen Chang  Xie Jin  Hu Chaoqun 《Biofouling》2013,29(6):525-531
Many pathogens undergo phase variation between rugose and smooth colony morphology or between opaque and translucent colony morphology, which is mainly due to the variation in the surface polysaccharides. In this study, Vibrio alginolyticus ZJ-51 displayed phase variation between opaque, rugose colonies (Op) and translucent, smooth colonies (Tr). Unlike the vibrios reported previously, Tr cells of ZJ-51 enhanced biofilm formation and motility, but they did not differ from Op cells in the quantity of surface polysaccharides produced. Real time PCR was used to analyze the expression of the genes involved in polysaccharide biosynthesis, flagellar synthesis, and the AI-2 quorum-sensing system. The results revealed that the K-antigen capsule gene cluster (which consists of homologs to the cpsA-K in Vibrio parahaemolyticus) and O-antigen polysaccharide gene cluster (which contains homologs to the wza-wzb-wzc) were significantly more transcribed in Tr cells. The AI-2 quorum-sensing genes showed enhanced expression in the Tr variant which also exhibited greater expression of genes associated with polar flagellar biosynthesis. These results suggest that colony phase variation might affect the virulence and survival ability in the stressful environment inhabited by V. alginolyticus.  相似文献   

12.
The biofilms and rugose colony morphology of Salmonella enterica serovar Typhimurium strains are usually associated with at least two different exopolymeric substances (EPS), curli and cellulose. In this study, another EPS, a capsular polysaccharide (CP) synthesized constitutively in S. enterica serovar Typhimurium strain DT104 at 25 and 37 degrees C, has been recognized as a biofilm matrix component as well. Fluorophore-assisted carbohydrate electrophoresis (FACE) analysis indicated that the CP is comprised principally of glucose and mannose, with galactose as a minor constituent. The composition differs from that of known colanic acid-containing CP that is isolated from cells of Escherichia coli and other enteric bacteria grown at 37 degrees C. The reactivity of carbohydrate-specific lectins conjugated to fluorescein isothiocyanate or gold particles with cellular carbohydrates demonstrated the cell surface localization of CP. Further, lectin binding also correlated with the FACE analysis of CP. Immunoelectron microscopy, using specific antibodies against CP, confirmed that CP surrounds the cells. Confocal microscopy of antibody-labeled cells showed greater biofilm formation at 25 degrees C than at 37 degrees C. Since the CP was shown to be produced at both 37 degrees C and 25 degrees C, it does not appear to be significantly involved in attachment during the early formation of the biofilm matrix. Although the attachment of S. enterica serovar Typhimurium DT104 does not appear to be mediated by its CP, the capsule does contribute to the biofilm matrix and may have a role in other features of this organism, such as virulence, as has been shown previously for the capsules of other gram-negative and gram-positive bacteria.  相似文献   

13.
The gram-negative, oral bacterium Actinobacillus actinomycetemcomitans has been implicated as the causative agent of several forms of periodontal disease in humans. When cultured in broth, fresh clinical isolates of A. actinomycetemcomitans form tenacious biofilms on surfaces such as glass, plastic, and saliva-coated hydroxyapatite, a property that probably plays an important role in the ability of this bacterium to colonize the oral cavity and cause disease. We examined the morphology of A. actinomycetemcomitans biofilm colonies grown on glass slides and in polystyrene petri dishes by using light microscopy and scanning and transmission electron microscopy. We found that A. actinomycetemcomitans developed asymmetric, lobed biofilm colonies that displayed complex architectural features, including a layer of densely packed cells on the outside of the colony and nonaggregated cells and large, transparent cavities on the inside of the colony. Mature biofilm colonies released single cells or small clusters of cells into the medium. These released cells adhered to the surface of the culture vessel and formed new colonies, enabling the biofilm to spread. We isolated three transposon insertion mutants which produced biofilm colonies that lacked internal, nonaggregated cells and were unable to release cells into the medium. All three transposon insertions mapped to genes required for the synthesis of the O polysaccharide (O-PS) component of lipopolysaccharide. Plasmids carrying the complementary wild-type genes restored the ability of mutant strains to synthesize O-PS and release cells into the medium. Our findings suggest that A. actinomycetemcomitans biofilm growth and detachment are discrete processes and that biofilm cell detachment evidently involves the formation of nonaggregated cells inside the biofilm colony that are destined for release from the colony.  相似文献   

14.
Vibrio cholerae, the causative agent of cholera can produce an exopolysaccharide (EPS). Some strains can also phenotypically switch from a smooth to a 'rugose' phenotype characterized by small wrinkled colonies, overproduction of EPS, increased biofilm formation in vitro and increased resistance to various stressful conditions. High frequency switching to the rugose phenotype is more common in epidemic strains than in non-pathogenic strains, suggesting EPS production and the rugose phenotype are important in cholera epidemiology. VpsR up-regulates Vibrio polysaccharide (VPS) genes and the synthesis of extracellular EPS (VPS). However, the function of VPS, the rugose phenotype and VpsR in pathogenesis is not well understood. We report that rugose strains of both classical and El Tor biotypes of epidemic V. cholerae are defective in the in vitro production of extracellular collagenase activity. In vivo studies in rabbit ileal loops suggest that VpsR mutants are attenuated in reactogenicity. Intestinal colonization studies in infant mice suggest that VPS production, the rugose phenotype and VpsR have a role in pathogenesis. Our results indicate that regulated VPS production is important for promoting in vivo biofilm formation and pathogenesis. Additionally, VpsR might regulate genes with roles in virulence. Rugose strains appear to be a subpopulation of cells that might act as a 'helper' phenotype promoting the pathogenesis of certain strains. Our studies provide new insight into the potential role of VPS, the rugose phenotype and VpsR in the pathogenesis of epidemic V. cholerae.  相似文献   

15.
A previous study has shown that Vibrio alginolyticus ZJ-51 undergoes colony phase variation between opaque/rugose (Op) and translucent/smooth (Tr). The AI-2 quorum-sensing master regulator ValR, a homolog to V. harveyi LuxR, was suggested to be involved in the transition. To investigate the role of ValR in the variation and in biofilm formation, an in-frame deletion of valR in both Op and Tr backgrounds was carried out. The mutants in both backgrounds showed an intermediate colony morphotype, where the colonies were less opaque/rugose but not fully translucent/smooth either. They also showed an intermediate level of motility. However, biofilm formation was severely decreased in both mutants and polar flagella were depleted also. Quantitative PCR showed that most of the genes related to flagellar and polysaccharide biosynthesis were upregulated in the mutant of Op background (ΔvalR/Op) but downregulated in the mutant of Tr background (ΔvalR/Tr) compared with their parental wild-type strains. This suggests that ValR may control biofilm formation by regulating flagellar biosynthesis and affect the expression of the genes involved in colony phase variation in V. alginolyticus.  相似文献   

16.
17.
18.
Rugose phenotypes, such as those observed in Vibrio cholerae, have increased resistance to chlorine, oxidative stress, and complement-mediated killing. In this study we identified and defined a rugose phenotype in Salmonella enterica serovar Typhimurium DT104 and showed induction only on certain media at 25°C after 3 days of incubation. Incubation at 37°C resulted in the appearance of the smooth phenotype. Observation of the ultrastructure of the rugose form and a stable smooth variant (Stv), which was isolated following a series of passages of the rugose cells, revealed extracellular substances only in cells from the rugose colony. Observation of the extracellular substance by scanning electron microscopy (SEM) was correlated with the appearance of corrugation during development of rugose colony morphology over a 4-day incubation period at 25°C. In addition, the cells also formed a pellicle in liquid broth, which was associated with the appearance of interlacing slime and fibrillar structures, as observed by SEM. The pellicle-forming cells were completely surrounded by capsular material, which bound cationic ferritin, thus indicating the presence of an extracellular anionic component. The rugose cells, in contrast to Stv, showed resistance to low pH and hydrogen peroxide and an ability to form biofilms. Based on these results and analogy to the rugose phenotype in V. cholerae, we propose a possible role for the rugose phenotype in the survival of S. enterica serovar Typhimurium DT104.  相似文献   

19.
Colonies grown from vegetative B. subtilis 2335 cells had a standard structure, with bacillar cells occupying the whole colony volume. At the same time, the colonies of this bacterium grown from germinated spores had an abnormal structure characterized by the location of cells in a surface layer 100-200 microns thick at the colony boundary with the air. The glycocalyx of the colonies grown from spores was characterized by a wetting angle theta e of 120 degrees-160 degrees, whereas that of the colonies grown from vegetative cells had an angle theta e as low as 5 degrees-30 degrees. It is suggested that spores and vegetative cells follow different strategies of substrate colonization and that the architectonics of bacterial colonies is determined by the physicochemical properties of the glycocalyx.  相似文献   

20.
Deleya marina 219 (ATCC 25374) produces large quantities of an acidic exopolysaccharide and characteristically forms mucoid colonies and large aggregates of cells. The exopolysaccharide of wild-type D. marina cells appears to occur as both film and fibrils in electron micrographs. The organization of exopolymeric material was indicative of structural heterogeneity. A spontaneous rough-colony mutant defective in exopolysaccharide, D. marina DMR, has been isolated. The absence of exopolymer corresponds to a nonmucoid, nonaggregating, adhesion-altered phenotype. In microplate adhesion assays, wild-type cells grown at 19 or 25 degrees C attached to hydrophilic surfaces but not to a hydrophobic surface. In contrast, mutant cells exhibited a significantly reduced level of attachment to hydrophilic surfaces and increased adhesion to a hydrophobic surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号