首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isoleucyl-tRNA synthetase from Escherichia coli catalyzes the activation of [18O2]isoleucine by adenosine 5'-[(R)-alpha-17O]triphosphate with inversion of configuration at phosphorus. Moreover, isoleucyl-tRNA synthetase does not catalyze positional isotope exchange in adenosine 5'-[beta-18O2]triphosphate in the absence of isoleucine or in the presence of the competitive inhibitor isoleucinol, which effectively eliminates the possibility of either adenylyl-enzyme or adenosine metaphosphate intermediates being involved. Together, these observations require that isoleucyl-tRNA synthetase catalyzes the activation of isoleucine by associative "in line" nucleotidyl transfer. The synthesis of adenosine 5'-[(R)-alpha-17O]diphosphate and its conversion to adenosine 5'-[(R)-alpha-17O]triphosphate is described and an explanation provided for the reported differences between the treatment of adenosine 5'-[(S)-alpha-thiodiphosphate] with cyanogen bromide and bromine in [18O]water.  相似文献   

2.
S P Harnett  G Lowe  G Tansley 《Biochemistry》1985,24(25):7446-7449
RNA ligase from bacteriophage T4 infected Escherichia coli catalyzes the activation of adenosine 3',5'-bisphosphate (representing the donor oligonucleotide) by adenosine 5'-[(S)-alpha-17O,alpha,alpha-18O2]triphosphate with retention of configuration at P alpha. Since single-step enzyme-catalyzed nucleotidyl transfer reactions proceed with inversion, this stereochemical result provides support for a double displacement mechanism involving an adenylyl-enzyme intermediate as proposed previously from isotope exchange experiments.  相似文献   

3.
Methionyl-tRNA synthetase from Escherichia coli catalyses the activation of [18O2]methionine by adenosine 5'-[(R)-alpha 17O]triphosphate with inversion of configuration at P alpha. Furthermore methionyl-tRNA synthetase does not catalyse positional isotope exchange in adenosine 5'-[beta-18O2]triphosphate in the absence of methionine or in the presence of the competitive inhibitor, methioninol, which eliminates the possibility of either adenylyl-enzyme or adenosine metaphosphate intermediates being involved. These observations require that methionyl-tRNA synthetase catalyses the activation of methionine by an associative 'in-line' nucleotidyl transfer mechanism. A kinetic study of positional isotope exchange in adenosine 5'-[beta-18O2]triphosphate in the presence of methionine, Mg2+ and methionyl-tRNA synthetase showed that torsional equilibration (18O exchange into the P alpha--O--P beta bridge) occurs faster than tumbling (18O exchange into P gamma by rotation about the C2 axis of Mg[18O2]PPi), demonstratings that the positional isotope exchange occurs at least in part in the E X Met-AMP X Mg[18O2]PPi complex.  相似文献   

4.
The stereochemical course of the argininosuccinate synthetase reaction has been determined. The SP isomer of [alpha-17O,alpha-18O,alpha beta-18O]ATP is cleaved to (SP)-[16O,17O,18O]AMP by the action of argininosuccinate synthetase in the presence of citrulline and aspartate. The overall stereochemical transformation is therefore net inversion, and thus the enzyme does not catalyze the formation of an adenylylated enzyme intermediate prior to the synthesis of citrulline adenylate. The RP isomer of adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) is a substrate in the presence of Mg2+, but the SP isomer is a substrate when Cd2+ is used as the activating divalent cation. Therefore, the lambda screw sense configuration of the beta,gamma-bidentate metal--ATP complex is preferred by the enzyme as the actual substrate. No significant discrimination could be detected between the RP and SP isomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) when Mg2+ or Mn2+ are used as the divalent cation. Argininosuccinate synthetase has been shown to require a free divalent cation for full activity in addition to the metal ion needed to complex the ATP used in the reaction.  相似文献   

5.
The influence of P1,P3-bis(5'-adenosyl)triphosphate (Ap3A), P1,P4-bis(5'-adenosyl)tetraphosphate (Ap4A) and its analogues, containing a residue of methylenediphosphonic acid in various positions of the oligophosphate chain, on the reactions catalysed by phenylalanyl-tRNA synthetase from E. coli MRE-600 has been studied. The compounds do not affect significantly the rate of ATP-[32P]PPi-exchange nor maintain this reaction in the absence of ATP. The diadenosineoligophosphates are shown to be noncompetitive inhibitors of ATP in the tRNA aminoacylation by phenylalanine (for Ap4A Ki = 1,45.10(-3) M). The phosphonate analogues of Ap4A inhibit the synthesis of Ap3A depending on their structure. The conclusion is thus drawn that the E. coli MRE-600 phenylalanyl-tRNA synthetase does not interact property with Ap4A and its phosphonate analogues.  相似文献   

6.
Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase.   总被引:2,自引:0,他引:2  
In the presence of ATP, luciferin (LH2), Mg2+ and pyrophosphatase, the firefly (Photinus pyralis) luciferase synthesizes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) through formation of the E-LH2-AMP complex and transfer of AMP to ATP. The maximum rate of the synthesis is observed at pH 5.7. The Km values for luciferin and ATP are 2-3 microM and 4 mM, respectively. The synthesis is strictly dependent upon luciferin and a divalent metal cation. Mg2+ can be substituted with Zn2+, Co2+ or Mn2+, which are about half as active as Mg2+, as well as with Ni2+, Cd2+ or Ca2+, which, at 5 mM concentration, are 12-20-fold less effective than Mg2+. ATP is the best substrate of the above reaction, but it can be substituted with adenosine 5'-tetraphosphate (p4A), dATP, and GTP, and thus the luciferase synthesizes the corresponding homo-dinucleoside polyphosphates:diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A), dideoxyadenosine 5',5"'-P1,P4-tetraphosphate (dAp4dA) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). In standard reaction mixtures containing ATP and a different nucleotide (p4A, dATP, adenosine 5'-[alpha,beta-methylene]-triphosphate, (Ap[CH2]pp), (S')-adenosine-5'-[alpha-thio]triphosphate [Sp)ATP[alpha S]) and GTP], luciferase synthesizes, in addition to Ap4A, the corresponding hetero-dinucleoside polyphosphates, Ap5A, adenosine 5',5"'-P1,P4-tetraphosphodeoxyadenosine (Ap4dA), diadenosine 5',5"'-P1,P4-[alpha,beta-methylene] tetraphosphate (Ap[CH2]pppA), (Sp-diadenosine 5',5"'-P1,P4-[alpha-thio]tetraphosphate [Sp)Ap4A[alpha S]) and adenosine-5',5"'-P1,P4-tetraphosphoguanosine (Ap4G), respectively. Adenine nucleotides, with at least a 3-phosphate chain and with an intact alpha-phosphate, are the preferred substrates for the formation of the enzyme-nucleotidyl complex. Nucleotides best accepting AMP from the E-LH2-AMP complex are those which contain at least a 3-phosphate chain and an intact terminal pyrophosphate moiety. ADP or other NDP are poor adenylate acceptors as very little diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) or adenosine-5',5"'-P1,P3-triphosphonucleosides (Ap3N) are formed. In the presence of NTP (excepting ATP), luciferase is able to split Ap4A, transferring the resulting adenylate to NTP, to form hetero-dinucleoside polyphosphates. In the presence of PPi, luciferase is also able to split Ap4A, yielding ATP. The cleavage of Ap4A in the presence of Pi or ADP takes place at a very low rate. The synthesis of dinucleoside polyphosphates, catalyzed by firefly luciferase, is compared with that catalyzed by aminoacyl-tRNA synthetases and Ap4A phosphorylase.  相似文献   

7.
The stereochemical course of the phosphoryl transfer reaction catalyzed by T4 polynucleotide kinase has been determined using the chiral ATP analog, (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate). T4 polynucleotide kinase catalyzes the transfer of the gamma-thiophosphoryl group of (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate) to the 5'-hydroxyl group of ApA to give the thiophosphorylated dinucleotide adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine. A sample of adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine was subjected to venom phosphodiesterase digestion. The resulting adenosine-5'-[18O]phosphorothioate was shown to have the Rp configuration, thus indicating that the thiophosphoryl transfer reaction occurs with overall inversion of configuration of phosphorus.  相似文献   

8.
O Goerlich  E Holler 《Biochemistry》1984,23(2):182-190
The synthesis of diadenosine 5',5"'-P1-,P4-tetraphosphate (Ap4A) catalyzed by phenylalanyl-tRNA synthetase in the presence of Zn2+ involves the same partial reactions (synthesis of phenylalanyladenylate and transfer of the adenylate moiety to ATP) as occur in the absence of this metal ion. However, transfer is strongly stimulated while adenylate synthesis is depressed. Also inhibited are pyrophosphorolysis of phenylalanyladenylate and transfer of phenylalanine from the adenylate to cognate tRNA, because overall tRNA phenylalanylation is depressed [Mayaux, J.-F., & Blanquet, S. (1981) Biochemistry 20, 4647-4654], whereas binding of tRNA to the synthetase is not. At moderate concentrations of Zn2+, and in the presence of 5 microM phenylalanine and 0.5 mM ATP, transfer of AMP is rate limiting, while at higher concentrations of Zn2+ synthesis of adenylate is rate determining. The Zn2+ concentration optimum for stimulation depends on the concentration of phenylalanine and ATP. The effects of Zn2+ are mediated through two classes of binding site(s) on the synthetase, the half-saturations of which are 1-4 and 20-30 microM Zn2+, respectively. Binding of Zn2+ to the second class of site(s) causes inhibition of the synthetase, whereas binding to the first class is responsible for activation and inhibition, which may be caused by a conformational change. Evidence for the latter is the observed decrease in protein intrinsic fluorescence intensity and the decrease in fluorescence intensity of 6-(p-toluidinyl)naphthalene-2-sulfonate, which is used as a reporter group. The kinetics of the binding reaction show a saturation dependence on Zn2+, also suggesting that a conformational change occurs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The product of the selD gene from Escherichia coli catalyses the formation of an activated selenium compound which is required for the synthesis of Sec-tRNA (Sec, selenocysteine) from Ser-tRNA and for the formation of the unusual nucleoside 5-methylaminomethyl-2-selenouridine in several tRNA species. selD was overexpressed in a T7 promoter/polymerase system and purified to apparent homogeneity. Purified SELD protein is a monomer of 37 kDa in its native state and catalyses a selenium-dependent ATP-cleavage reaction delivering AMP and releasing the beta-phosphate as orthophosphate. The gamma-phosphate group of ATP was not liberated in a form able to form a complex with molybdate. It was precluded that any putative covalent or non-covalent ligand of SELD not removed during purification participated in the reaction. In a double-labelling experiment employing [75Se]selenite plus dithiothreitol and [gamma-32P]ATP the 75Se and 32P radioactivities co-chromatographed on a poly(ethyleneimine)-cellulose column. No radioactivity originating from ATP eluted in this position when [alpha-32P]ATP or [beta-32P]ATP or [14C]ATP were offered as substrates. The results support the speculation that the product of SELD is a phosphoselenoate with the phosphate moiety derived phosphoselenoate from the gamma-phosphate group of ATP. The alpha,beta cleavage of ATP is also supported by the finding that neither adenosine 5'-[alpha,beta-methylene]triphosphate nor adenosine 5'-[beta,gamma-methylene]triphosphate served as substrates in the reaction.  相似文献   

10.
Synthesis of Sp and Rp diastereomers of Ap4A alpha S has been characterized in two enzymatic systems, the lysyl-tRNA synthetase from Escherichia coli and the Ap4A alpha, beta-phosphorylase from Saccharomyces cerevisiae. The synthetase was able to use both (Sp)ATP alpha S and (Rp)ATP alpha S as acceptors of adenylate thus yielding corresponding monothioanalogues of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S. No dithiophosphate analogue was formed. Relative synthetase velocities of the formation of Ap4A,(Sp) Ap4A alpha S and (Rp)Ap4A alpha S were 1:0.38:0.15, and the computed Km values for (Sp)ATP alpha S and (Rp)ATP alpha S were 0.48 and 1.34 mM, respectively. The yeast Ap4A phosphorylase synthesized (Sp)Ap4A alpha S and (Rp)Ap4A alpha S using adenosine 5'-phosphosulfate (APS) as source of adenylate. The adenylate was accepted by corresponding thioanalogues of ATP. In that system, relative velocities of Ap4A, (Sp)Ap4A alpha S and (Rp)Ap4A alpha S formation were 1:0.15:0.60. The two isomeric phosphorothioate analogues of Ap4A were tested as substrates for the following specific Ap4A-degrading enzymes: (asymmetrical) Ap4A hydrolase (EC 3.6.1.17) from yellow lupin (Lupinus luteus) seeds hydrolyzed each of the analogues to AMP and the corresponding isomer of ATP alpha S; (symmetrical) Ap4A hydrolase (EC 3.6.1.41) from E. coli produced ADP and the corresponding diastereomer of ADP alpha S; and Ap4A phosphorylase (EC 2.7.7.53) from S. cerevisiae cleaved the Rp isomer only at the unmodified end yielding ADP and (Rp)ATP alpha S whereas the Sp isomer was degraded non-specifically yielding a mixture of ADP, (Sp)ADP alpha S, ATP and (Sp)ATP alpha S. For all the Ap4A-degrading enzymes, the Rp isomer of Ap4A alpha S appeared to be a better substrate than its Sp counterpart; stereoselectivity of the three enzymes for the Ap4A alpha S diastereomers is 51, 6 and 2.5, respectively. Basic kinetic parameters of the degradation reactions are presented and structural requirements of the Ap4A-metabolizing enzymes with respect to the potential substrates modified at the Ap4A-P alpha are discussed.  相似文献   

11.
NAD pyrophosphorylase catalyses nucleotidyl transfer from adenosine (R)-5'-[alpha-17O]triphosphate to nicotinamide mononucleotide with inversion of configuration at the alpha-P giving (S)-[17O]NAD+. The simplest interpretation of this observation is that the adenylyl group is transferred directly from ATP to the co-substrate by an 'in line' mechanism. It is also shown that snake venom phosphodiesterase hydrolyses NAD+ regio-specifically at the adenylyl terminus of the pyrophosphate bond.  相似文献   

12.
A simple and practical procedure for the synthesis of P1,P4-di(adenosine 5'-) tetraphosphate from ATP by the catalysis of leucyl-tRNA synthetase from Bacillus stearothermophilus is described. Km for leucine was 6.7 microM and for ATP was 3.3 mM. The reaction yielded not only diadenosine tetraphosphate, but various byproducts such as P1,P3-(diadenosine 5'-) triphosphate, ADP and AMP. By coupling the reaction with an ATP regeneration system by acetate kinase and adenylate kinase with acetylphosphate as a phosphate donor, diadenosine tetraphosphate was prepared as a sole product at a high yield (96%).  相似文献   

13.
Inhibitory effects of various purinergic compounds on the Mg(2+)-dependent enzymatic hydrolysis of [(3)H]ATP in rat liver plasma membranes were evaluated. Rat liver enzyme ecto-ATPase has a broad nucleotide-hydrolyzing activity, displays Michaelis-Menten kinetics with K(m) for ATP of 368+/-56 microM and is not sensitive to classical inhibitors of the ion-exchange and intracellular ATPases. P2-antagonists and diadenosine tetraphosphate (Ap(4)A) progressively and non-competitively inhibited ecto-ATPase activity with the following rank order of inhibitory potency: suramin (pIC(50), 4.570)>Reactive blue 2 (4.297)&z.Gt;Ap(4)A (3. 268)>pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (2. 930). Slowly hydrolyzable P2 agonists ATPgammaS, ADPbetaS, alpha, beta-methylene ATP and beta,gamma-methylene ATP as well as the diadenosine polyphosphates Ap(3)A and Ap(5)A did not exert any inhibitory effects on the enzyme activity at concentration ranges of 10(-4)-10(-3) M. Thin-layer chromatography analysis of the formation of [(3)H]ATP metabolites indicated the presence of other enzyme activities on liver surface (ecto-ADPase and 5'-nucleotidase), participating in concert with ecto-ATPase in the nucleotide hydrolysis through the stepwise reactions ATP-->ADP-->AMP-->adenosine. A similar pattern of sequential [(3)H]ATP dephosphorylation still occurs in the presence of ecto-ATPase inhibitors suramin, Ap(4)A and PPADS, but the appearance of the ultimate reaction product, adenosine, was significantly delayed. In contrast, hydrolysis of [(3)H]ATP in the presence of Reactive blue 2 only followed the pattern ATP-->ADP, with formation of the subsequent metabolites AMP and adenosine being virtually eliminated. These data suggest that although nucleotide-binding sites of ecto-ATPase are distinct from those of P2 receptors, some purinergic agonists and antagonists can potentiate cellular responses to extracellular ATP through non-specific inhibition of the ensuing pathways of purine catabolism.  相似文献   

14.
Abend A  Garrison PN  Barnes LD  Frey PA 《Biochemistry》1999,38(12):3668-3676
Fhit is the protein product of FHIT, a candidate human tumor suppressor gene. Fhit catalyzes the hydrolysis of diadenosine triphosphate (Ap3A) to AMP and ADP. Fhit is here shown to catalyze the hydrolysis in H218O with production of adenosine 5'-[18O]phosphate and ADP, proving that the substitution of water is at Palpha and not at Pbeta. The chain fold of Fhit is similar to that of galactose-1-phosphate uridylyltransferase, which functions by a double-displacement mechanism through the formation of a covalent nucleotidyl-enzyme intermediate and overall retention of configuration at Palpha. The active site of Fhit contains a histidine motif that is reminiscent of the HPH motif in galactose-1-phosphate uridylyltransferases, in which the first histidine residue serves as the nucleophilic catalyst to which the nucleotidyl group is bonded covalently in the covalent intermediate. In this work, the Fhit-catalyzed cleavage of (RP)- and (SP)-gamma-(m-nitrobenzyl) adenosine 5'-O-1-thiotriphosphate (mNBATPalphaS) in H218O to adenosine 5'-[18O]thiophosphate is shown to proceed with overall retention of configuration at phosphorus. gamma-(m-Nitrobenzyl) adenosine 5'-O-triphosphate (mNBATP) is approximately as good a substrate for Fhit as Ap3A, and both (RP)- and (SP)-mNBATPalphaS are substrates that react at about 0.5% of the rate of Ap3A. The stereochemical evidence indicates that hydrolysis by Fhit proceeds by a double-displacement mechanism, presumably through a covalent AMP-enzyme intermediate.  相似文献   

15.
The biosynthesis of phosphatidylcholine in rat liver microsomal preparations catalysed by CDP-choline-1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) was inhibited by a combination of ATP and CoA or ATP and pantetheine. ATP alone at high concentrations (20 mM) inhibits phosphatidylcholine formation to the extent of 70%. In the presence of 0.1 mM-CoA, ATP (2 mM) inhibits to the extent of 80% and in the presence of 1 mM-pantetheine to the extent of 90%. ADP and other nucleotide triphosphates in combination with either CoA or pantetheine are only 10-30% as effective in inhibiting phosphatidylcholine synthesis. AMP(CH2)PP [adenosine 5'-(alphabeta-methylene)triphosphate] together with CoA inhibits to the extent of 59% and with pantetheine by 48%. AMP-P(CH2)P [adenosine 5'-(betagamma-methylene)triphosphate] together with either CoA or pantetheine had no significant effect on phosphatidylcholine formation. Other closely related derivatives of pantothenic acid were without effect either alone or in the presence of ATP, as were thiol compounds such as cysteine, homocysteine, cysteamine, dithiothreitol and glutathione. Several mechanisms by which this inhibition might take place were ruled out and it is concluded that ATP together with either CoA or pantetheine interacts reversibly with phosphatidylcholine synthetase to cause temporarily the inhibition of phosphatidylcholine formation.  相似文献   

16.
Temperature and other factors affecting synthesis of bis(5'-adenosyl) tetraphosphate (Ap4A) and bis(5'-adenosyl)triphosphate (Ap3A) catalyzed by phenylalanyl-tRNA synthetases (PheRSs) from Escherichia coli MRE-600 and Thermus thermophilus HB8 have been investigated. Those two synthetases exhibited different temperature-dependent rates of the Ap4A and Ap3A synthesis. However, with respect to the effects of such effectors of the Ap4A synthesis as Zn2+, Mg2+, tRNA and Ap4A phosphonate analogues, as well as some inhibitors of aminoacyl-tRNA synthetase, those two enzymes were apparently undistinguishable.  相似文献   

17.
Herpes simplex virus type I (HSV-I)-induced thymidine kinase has been shown to catalyze phosphoryl transfer from adenosine 5'-[gamma-(S)-16O,17O,18O]triphosphate to thymidine with inversion of configuration at phosphorus. The simplest interpretation of this result is that phosphoryl transfer occurs by a single in-line group transfer between ATP and thymidine within the ternary enzyme complex.  相似文献   

18.
Adenosine 5'-(S)-[16O,17O,18O]phosphate was pyrophosphorylated by the combined action of adenylate kinase and pyruvate kinase. The isotopomers of adenosine 5'-[alpha-16O,17O,18O]triphosphate were hydrolysed by venom 5'-nucleotide phosphodiesterase (Crotalus adamanteus) in H2(17)O. Analysis by 31P nuclear magnetic resonance spectroscopy of the resulting adenosine 5'-[16O,17O,18O]phosphate, after cyclization and esterification, showed that the hydrolysis occurs with retention of configuration at phosphorus. The most likely explanation of this observation is that the enzymic hydrolysis involves a double displacement at phosphorus with a covalent nucleotidyl--enzyme intermediate on the reaction pathway.  相似文献   

19.
Nishi H  Hori S  Niitsu A  Kawamura M 《Life sciences》2004,74(9):1181-1190
The study was aimed to investigate the existence of at least two kinds of P2Y receptors linked to steroidogenesis in bovine adrenocortical fasciculata cells (BAFCs). Extracellular nucleotides facilitated steroidogenesis in BAFCs. The potency order was UTP > adenosine 5'-(gamma-thio) triphosphate (ATPgammaS) > ATP > 2-methylthio ATP (2MeSATP) > adenosine 5'-(beta-thio) diphosphate (ADPbetaS) > alpha,beta-methylene ATP (alpha,beta-me-ATP), beta,gamma-methylene ATP (beta,gamma -me-ATP). ATPgammaS (10-100 microM) remarkably stimulated both total inositol phosphates (IPs) production and cyclic AMP (cAMP) accumulation. Competitive displacement experiments by using [35S]ATPgammaS as a radioactive ligand in BAFCs showed that the potency under these unlabelled ligands was ATPgammaS > ATP > ADPbetaS > 2MeSATP > UTP > alpha,beta-me-ATP, beta,gamma-me-ATP. These suggest that two different binding sites of [35S]ATPgammaS, namely P2Y receptors, exist in BAFCs, and that these receptors are linked to steroidogenesis via distinct second messenger systems in the cells.  相似文献   

20.
NADPH-oxidase-catalyzed superoxide (O2-) formation in membranes of HL-60 leukemic cells was activated by arachidonic acid in the presence of Mg2+ and HL-60 cytosol. The GTP analogues, guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S] and guanosine 5'-[beta,gamma-imido]triphosphate, being potent activators of guanine-nucleotide-binding proteins (G proteins), stimulated O2- formation up to 3.5-fold. The adenine analogue of GTP[gamma S], adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]), which can serve as donor of thiophosphoryl groups in kinase-mediated reactions, stimulated O2- formation up to 2.5-fold, whereas the non-phosphorylating adenosine 5'-[beta,gamma-imido]triphosphate was inactive. The effect of ATP[gamma S] was half-maximal at a concentration of 2 microM, was observed in the absence of added GDP and occurred with a lag period two times longer than the one with GTP[gamma S]. HL-60 membranes exhibited nucleoside-diphosphate kinase activity, catalyzing the thiophosphorylation of GDP to GTP[gamma S] by ATP[gamma S]. GTP[gamma S] formation was half-maximal at a concentration of 3-4 microM ATP[gamma S] and was suppressed by removal of GDP by creatine kinase/creatine phosphate (CK/CP). The stimulatory effect of ATP[gamma S] on O2- formation was abolished by the nucleoside-diphosphate kinase inhibitor UDP. Mg2+ chelation with EDTA and removal of endogenous GDP by CK/CP abolished NADPH oxidase activation by ATP[gamma S] and considerably diminished stimulation by GTP[gamma S]. GTP[gamma S] also served as a thiophosphoryl group donor to GDP, with an even higher efficiency than ATP[gamma S]. Transthiophosphorylation of GDP to GTP[gamma S] was only partially inhibited by CK/CP. Our results suggest that NADPH oxidase is regulated by a G protein, which may be activated either by exchange of bound GDP by guanosine triphosphate or by thiophosphoryl group transfer to endogenous GDP by nucleoside-diphosphate kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号