首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Aiming to develop selective anticancer drugs, we designed and synthesized three disulfides bearing a folic acid moiety as candidate folate receptor (FR)-targeted prodrugs of thiolate histone deacetylase inhibitors. Among them, compound 1 displayed growth-inhibitory activity toward folate receptor-positive MCF-7 breast cancer cells. The activity of 1 was significantly reduced by free folic acid, suggesting that cellular uptake of 1 is mediated by FR.  相似文献   

2.
Microemulsions (oil-in-water) have been employed as templates to engineer nanoparticles containing high concentrations of gadolinium for potential application in neutron capture therapy of tumors. Gadolinium hexanedione (GdH), synthesized by complexation of Gd(3+) with 2,4-hexanedione, was used as the nanoparticle matrix alone or in combination with either emulsifying wax or PEG-400 monostearate. Solid nanoparticles (<125 nm size) were obtained by simple cooling of the microemulsions prepared at 60 degrees C to room temperature in one vessel. The feasibility of tumor targeting via folate receptors was studied. A folate ligand was synthesized by chemically linking folic acid to distearoylphosphatidylethanolamine (DSPE) via a poly(ethylene glycol) (PEG; MW 3350) spacer. To obtain folate-coated nanoparticles, the folate ligand (0.75% w/w to 15% w/w) was added to either the microemulsion templates at 60 degrees C or nanoparticle suspensions at 25 degrees C. Efficiencies of folate ligand attachment/adsorption to nanoparticle formulations were monitored by gel permeation chromatography. Cell uptake studies were carried out in KB cells (human nasopharyngeal epidermal carcinoma cell line), known to overexpress folate receptors. The uptake of folate-coated nanoparticles was about 10-fold higher than uncoated nanoparticles after 30 min at 37 degrees C. The uptake of folate-coated nanoparticles at 4 degrees C was 20-fold lower than the uptake at 37 degrees C and comparable to the uptake of uncoated nanoparticles at 37 degrees C. Folate-mediated endocytosis was further verified by the inhibition of folate-coated nanoparticles uptake by free folic acid. It was observed that folate-coated nanoparticles uptake decreased to approximately 2% of its initial value with the coincubation of 0.001 mM of free folic acid. The results suggested that these tumor-targeted nanoparticles containing high concentrations of Gd may have potential for neutron capture therapy.  相似文献   

3.
Gold nanoparticles (GNPs) were modified with glutathione (GSH) to form GSH-capped GNPs, which have carboxyl groups on the surface of these nanoparticles. Then folic acid (FA) was conjugated with GNPs through the reaction between amino group of FA and carboxyl group of GSH. These folic acid-conjugated nanoparticles (FA-GSH-GNPs) were stable in aqueous solution over a broad range of pH and ionic strength values. The targeting of FA-GSH-GNPs in human cervices carcinoma cells (HeLa cells) with high-level folate receptor expression was confirmed by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). No cellular uptake of these nanoparticles was observed in A549 cells lack of folate receptor. HeLa cells and mouse fibroblasts incubated with FA-GSH-GNPs were assayed by measuring the relative absorbance of the supernatant collected at low-speed centrifugation. Based on this simple spectroscopic method, HeLa cells have been detected with a detection limit of 102 cells/mL.  相似文献   

4.
DC-3F/FA3 cells (FA3) were obtained by selection of Chinese hamster lung fibroblasts for growth in folic acid free media, supplemented with 15 pM [6S]-5-formyltetrahydrofolic acid. These cells, as a result of low level gene amplification and RNA stabilization, were found to overexpress folate receptor alpha (FR alpha) mRNA by more than five hundred fold. The expression level of the receptor, a 43 kDa GPI-linked plasma membrane glycoprotein, was found to be inversely related to changes in media folate concentrations while its steady state mRNA level remained unaffected. In low folate, the rate of receptor synthesis was found to increase by more than three fold, while its half-life stabilized as compared to that observed in high folate media. Although DC-3F cells were found to contain low amounts of FR alpha mRNA, receptor expression was undetectable, and changing media folate concentrations had no effect on the expression of either. Hence, while selection for growth in low folate leads to stable overexpression of FR alpha mRNA, receptor expression is regulated at the level of protein synthesis by a mechanism sensitive to media folate levels.  相似文献   

5.
In the pathogenesis of atherosclerosis, macrophages become activated and play a crucial role in plaque formation. Activated synovial macrophages have recently been shown to express receptors for folic acid. We have determined whether activated macrophages also over-express folate receptor (FR) in atherosclerosis. Most normal cells express little or no FR, and, if FR is present on activated macrophages, folate-linked compounds and drugs could be selectively targeted to those cells that do express FR. To evaluate the FR on macrophages of atherosclerotic animals, golden Syrian hamsters were maintained on a hyperlipidemic diet until extensive vascular lesions had developed. Uptake of folic acid conjugated to fluorescent tags was then examined in tissue fragments from lesion-prone areas, and peritoneal activated macrophages were harvested from the same animals. Spectrofluorimetric and fluorescence microscopic analyses showed a significantly greater uptake of folate-conjugates by peritoneal macrophages of hyperlipidemic hamsters compared with those of hamsters fed a normal or folate-deficient diet. Systemically administered folate-fluorescent conjugates were found to accumulate as bright spots in protrusions of atherosclerotic plaques populated by macrophages, whereas a low level of fluorescence was detected uniformly dispersed across the lesion. The uptake of the folate conjugate by U937 macrophage cells grown in a high-lipid culture medium was significantly higher than in controls. Our data thus indicate that hyperlipidemic conditions induce an increased uptake of folate attributable to the over-expression of FRs on activated macrophages. This increase in FR expression can be exploited to deliver folate-linked compounds selectively to atherosclerotic lesions. This work was supported by a grant from the Romanian Academy and Ministry of Education, Research and Technology, Bucharest, Romania, and partially by a grant from Endocyte and the Indiana 21st Century Fund.  相似文献   

6.
Conjugation of folate to proteins permits receptor-mediated endocytosis via the folate receptor (FR) and delivery of the conjugate into the cytoplasm of cells. Since many cancers up-regulate the FR it has enabled the targeting of toxins to tumor cells resulting in specific cell death. However, current conjugation methods rely on chemistries that can affect certain catalytic subunits, such as the A-chain of the plant toxin gelonin. As a result many folate-targeted toxins are a compromise between receptor/ligand interaction and toxin activity. We describe the first example of folate conjugated to a protein via carbohydrate residues, using a novel SH-folate intermediate. The folate-gelonin conjugate retains over 99% of toxin activity in a cell-free translational assay compared with unmodified gelonin and is able to bind the FR at the same affinity as free folic acid (10(-10) m). Additionally, the conjugate exhibits prolonged inhibition of protein synthesis in FR positive cell lines in vitro. Folate linked to gelonin via amino conjugation exhibits the same affinity for FR as free folic acid but the toxin is 225-fold less active in a cell-free translational assay. The effect of different conjugation methods on toxin activity and the implications for folate targeting of other glycoproteins are discussed.  相似文献   

7.
Synthesizing nanocarriers with stealth properties and delivering a "payload" to the particular organ remains a big challenge but is the prime prerequisite for any in vivo application. As a nontoxic alternative to the modification by poly(ethylene glycol) PEG, we describe the synthesis of cross-linked hydroxyethyl starch (HES, M(w) 200,000 g/mol) nanocapsules with a size range of 170-300 nm, which do not show nonspecific uptake into cells. The specific uptake was shown by coupling a folic acid conjugate as a model targeting agent onto the surface of the nanocapsules, because folic acid has a high affinity to a variety of human carcinoma cell lines which overexpress the folate receptor on the cell surface. The covalent binding of the folic acid conjugate onto HES capsules was confirmed by FTIR and NMR spectroscopy. The coupling efficiency was determined using fluorescence spectroscopy. The specific cellular uptake of the HES nanocapsules after folic acid coupling into the folate-receptor presenting cells was studied by confocal laser scanning microscopy (CLSM) and flow cytometry.  相似文献   

8.
New folate-conjugated superparamagnetic maghemite nanoparticles have been synthesized for the intracellular hyperthermia treatment of solid tumors. These ultradispersed nanosystems have been characterized for their physicochemical properties and tumor cell targeting ability, facilitated by surface modification with folic acid. Preliminary experiments of nanoparticles heating under the influence of an alternating magnetic field at 108 kHz have been also performed. The nanoparticle size, surface charge, and colloidal stability have been assessed in various conditions of ionic strength and pH. The ability of these folate "decorated" maghemite nanoparticles to recognize the folate receptor has been investigated both by surface plasmon resonance and in folate receptor expressing cell lines, using radiolabeled folic acid in competitive binding experiments. The specificity of nanoparticle cellular uptake has been further investigated by transmission electron microscopy after incubation of these nanoparticles in the presence of three cell lines with differing folate receptor expression levels. Qualitative and quantitative determinations of both folate nanoparticles and nontargeted control nanoparticles demonstrated a specific cell internalization of the folate superparamagnetic nanoparticles.  相似文献   

9.
The objective of this study was to investigate the use of folate-targeted liposomes for the delivery of encapsulated oligonucleotides to folate receptor (FR)-positive tumor cells in vitro and in vivo. This project involved the synthesis and biological evaluation of many folate-PEG-lipid conjugates, where the chemical form of the folate moiety (pteroate) and the length of the PEG linker chain were varied widely. Folate-targeted oligonucleotide-containing liposomes were prepared using conventional methods, and the extent of cell uptake was evaluated using, among others, the FR positive KB cell line. Oligonucleotide-loaded folate-targeted liposomes were found to rapidly associate with the KB cells, and saturation was typically reached within the first hour of incubation at 37 degrees C. Nearly 100,000 liposomes per cell were bound or internalized at saturation. Importantly, cell association was blocked by a large excess folic acid, thus reflecting the FR-specific nature of the cell interaction. Full targeting potential was achieved with PEG linkers as low as 1000 in molecular weight, and pteroates bearing glycine or gamma-aminobutyryl residues juxtaposed to the pteroic acid moiety were also effective for targeting, provided that a terminal cysteine moiety was present at the distal end of the PEG chain for added hydrophilicity. When tested in vivo, folate-targeted liposomes were found to deliver approximately 1.8-fold more oligonucleotide to the livers of nude mice (relative to the nontargeted PEG-containing formulations); however, no improvement in KB tumor uptake was observed. We conclude from these results that folate liposomes can effectively deliver oligonucleotides into folate receptor-bearing cells in vitro, but additional barriers exist in vivo that prevent or decrease effective tumor uptake and retention.  相似文献   

10.
用胆固醇合成抑制剂Lovastatin(洛伐他汀,暂译名)和神经鞘脂类合成抑制剂FumonisinB1(抑鞘脂素B1,暂译名)处理能表达糖基化磷脂酰肌醇锚定叶酸受体(GPIFR)的基因转染细胞(FRα·TRVB-1)3d,发现前者可使细胞的胆固醇含量减少约35%,而后者可使神经鞘脂类减少44%以上;同时发现,处理组细胞结合叶酸的能力减少约40%,其对5-甲基四氢叶酸的摄入率减少逾80%.这主要是由于细胞质膜中胆固醇和神经鞘脂类含量减少,从而导致膜内GPIFR结合叶酸功能降低及GPIFR摄入叶酸的内化过程障碍所致.其详细作用机制尚待进一步研究  相似文献   

11.
Role of reduced folate carrier in intestinal folate uptake   总被引:3,自引:0,他引:3  
Studies from our laboratory and others have characterized different aspects of the intestinal folate uptake process and have shown that the reduced folate carrier (RFC) is expressed in the gut and plays a role in the uptake process. Little, however, is known about the actual contribution of the RFC system toward total folate uptake by the enterocytes. Addressing this issue in RFC knockout mice is not possible due to the embryonic lethality of the model. In this study, we describe the use of the new approach of lentivirus-mediated short hairpin RNA (shRNA) to selectively silence the endogenous RFC of the rat-derived intestinal epithelial cells (IEC-6), an established in vitro model for folate uptake, and examined the effect of such silencing on folate uptake. First we confirmed that the initial rate of [(3)H]folic acid uptake by IEC-6 cells was pH dependent with a markedly higher uptake at acidic compared with alkaline pH. We also showed that the addition of unlabeled folic acid to the incubation buffer leads to a severe inhibition ( approximately 95%) in [(3)H]folic acid (16 nM) uptake at buffer pH 5.5 but not at buffer pH 7.4. We then examined the effect of treating (for 72 h) IEC-6 cells with RFC-specific shRNA on the levels of RFC protein and mRNA and observed substantial reduction in the levels of both parameters ( approximately 80 and 78%, respectively). Such a treatment was also found to lead to a severe inhibition ( approximately 90%) in initial rate of folate uptake at buffer pH 5.5 (but not at pH 7.4); uptake of the unrelated vitamin, biotin, on the other hand, was not affected by such a treatment. These results demonstrate that the RFC system is the major (if not the only) folate uptake system that is functional in intestinal epithelial cells.  相似文献   

12.
Chen S  Zhang XZ  Cheng SX  Zhuo RX  Gu ZW 《Biomacromolecules》2008,9(10):2578-2585
Amphiphilic hyperbranched core-shell polymers with folate moieties as the targeting groups were synthesized and characterized. The core of the amphiphilic polymers was hyperbranched aliphatic polyester Boltorn H40. The inner part and the outer shell of the amphiphilic polymers were composed of hydrophobic poly(epsilon-caprolactone) segments and hydrophilic poly(ethylene glycol) (PEG) segments, respectively. To achieve tumor cell targeting property, folic acid was further incorporated to the surface of the amphiphilic polymers via a coupling reaction between the hydroxyl group of the PEG segment and the carboxyl group of folic acid. The polymers were characterized by (1)H NMR, (13)C NMR, and combined size-exclusion chromatography and multiangle laser light scattering analysis. The nanoparticles of the amphiphilic polymers prepared by dialysis method were characterized by transmission electron microscopy and particle size analysis. Two antineoplastic drugs, 5-fluorouracil and paclitaxel, were encapsulated into the nanoparticles. The drug release property and the targeting of the drug-loaded nanoparticles to different cells were evaluated in vitro. The results showed the drug-loaded nanoparticles exhibited enhanced cell inhibition because folate targeting increased the cytotoxicity of drug-loaded nanoparticles against folate receptor expressing tumor cells.  相似文献   

13.
A major challenge in the application of cytotoxic anti-cancer drugs is their general lack of selectivity, which often leads to systematic toxicity due to their inability to discriminate between malignant and healthy cells. A particularly promising target for selective targeting are the folate receptors (FR) that are often over-expressed on cancer cells. Here, we report on a conjugate of the pentadentate nitrogen ligand N4Py to folic acid, via a cleavable disulphide linker, which shows selective cytotoxicity against folate receptor expressing cancer cells.  相似文献   

14.
Successful treatment of cancer by boron neutron capture therapy (BNCT) requires the selective delivery of (10)B to constituent cells within a tumor. The expression of the folate receptor is amplified in a variety of human tumors and potentially might serve as a molecular target for BNCT. In the present study we have investigated the possibility of targeting the folate receptor on cancer cells using folic acid conjugates of boronated poly(ethylene glycol) (PEG) containing 3rd generation polyamidoamine dendrimers to obtain (10)B concentrations necessary for BNCT by reducing the uptake of these conjugates by the reticuloendothelial system. First we covalently attached 12-15 decaborate clusters to 3rd generation polyamidoamine dendrimers. Varying quantities of PEG units with varying chain lengths were then linked to these boronated dendrimers to reduce hepatic uptake. Among all prepared combinations, boronated dendrimers with 1-1.5 PEG(2000) units exhibited the lowest hepatic uptake in C57BL/6 mice (7.2-7.7% injected dose (ID)/g liver). Thus, two folate receptor-targeted boronated 3rd generation polyamidoamine dendrimers were prepared, one containing approximately 15 decaborate clusters and approximately 1 PEG(2000) unit with folic acid attached to the distal end, the other containing approximately 13 decaborate clusters, approximately 1 PEG(2000) unit, and approximately 1 PEG(800) unit with folic acid attached to the distal end. In vitro studies using folate receptor (+) KB cells demonstrated receptor-dependent uptake of the latter conjugate. Biodistribution studies with this conjugate in C57BL/6 mice bearing folate receptor (+) murine 24JK-FBP sarcomas resulted in selective tumor uptake (6.0% ID/g tumor), but also high hepatic (38.8% ID/g) and renal (62.8% ID/g) uptake, indicating that attachment of a second PEG unit and/or folic acid may adversely affect the pharmacodynamics of this conjugate.  相似文献   

15.
Folate conjugates (PNIPAM-NH-FA) of a copolymer of N-isopropylacrylamide (NIPAM) and amino-N'-ethylenedioxy-bis(ethylacrylamide) were prepared by an efficient synthesis leading to random grafting, via a short dioxyethylene spacer, of approximately 7 folic acid residues per macromolecule. The chemical composition of the copolymer was characterized by (1)H NMR and UV/vis spectroscopy. A fluorophore-labeled folate PNIPAM conjugate was tested by in vitro assays performed with cultured KB-31 cells overexpressing the folate receptor. The cellular uptake of the copolymer was found to be temperature dependent and was competitively decreased by free folic acid, indicating that the polymer uptake is mediated specifically by the folate receptor. Hydrophobically modified folate conjugates of NIPAM, amino-N'-ethylenedioxy-bis(ethylacrylamide) copolymers, bearing a small number of n-octadecyl groups were prepared following a modified synthetic procedure for use in future studies of FA-targeted liposomes.  相似文献   

16.
The folate receptor (FR) in HeLa cells was characterized as to ligandbinding mechanism, antigenic properties and membrane anchor in order toobtain information to be used for the design of biological agentstargeting FR in malignant tumors. The receptor displayed the followingbinding characteristics in equilibrium dialysis experiments(37°C, pH 7.4) with [3H] folate: a high-affinity type of bindingthat exhibited positive cooperativity with a Hill coefficient >1.0and an upward convex Scatchard plot, a slow radioligand dissociation atpH 7.4 becoming rapid at pH 3.5 and inhibition in the presence of otherfolates. The molecular size of the receptor was 100 kDa on gel filtrationwith Triton X-100, or similar to that of high molecular weight human milkfolate binding protein (FBP). The latter protein represents a 25 kDamolecule which equipped with a hydrophobic glycosylphosphatidylinositol (GPI) membrane anchor susceptible to cleavage byphosphatidylinositol specific phospholipase C (PI-PLC) formsmicelles of 100 kDa size with Triton X-100. The HeLa cell FRimmunoreacted with antibodies against purified human milk FBP inELISA, and in a fluorescence activated cell sorting system, whereHeLa cells exposed to increasing concentrations of antibody showed adose-dependent response. Exposure to PI-PLC decreased the fraction ofimmunolabeled cells indicating a linkage of FR to cell membranes by aGPI anchor. HeLa cells incubated with radiofolate showed a continuousuptake with time, however, with a complete suppression of uptake in thepresence of an excess of cold folate. Prewash of cells at acidic pH toremove endogenous folate increased the uptake. Binding and uptake of [3H]folate was increased in cells grown in a folate-deprived medium. The HeLaFR seems to be epitope related to human milk FBP.  相似文献   

17.
Two biochemically distinct systems, the high affinity folate receptor and the lower affinity reduced-folate carrier, have each been implicated in mediating the transport of folates and antifolates into cells. Previous studies from our laboratory have shown that methotrexate accumulation into wild type (WT) ZR-75-1 human breast cancer cells involves a system with characteristics of the reduced-folate carrier, that this system is deficient in methotrexate resistant (MTXR) ZR-75-1 cells in which methotrexate transport is undetectable and that neither breast cancer cell line expresses folate receptors. In this report we examined the possible interaction of the reduced-folate carrier with folate receptors by stably transfecting both WT ZR-75-1 and MTXR ZR-75-1 cells with an expression vector containing a folate receptor cDNA. Clones of stably transfected MTXR ZR-75-1 and WT ZR-75-1 cells expressing comparable levels of folate receptors were studied and compared to the nontransfected cell lines. Although nontransfected WT and MTXR ZR-75-1 cell lines require concentrations > or = 100 nM folic acid for growth, the expression of folate receptors in transfected WT and MTXR ZR-75-1 cells permitted the growth of both cell lines in low concentrations (1 nM) of folic acid. While the defect in the reduced-folate carrier system in MTXR ZR-75-1 cells inhibits their growth in medium containing low concentrations of folinic acid (< or = 1 microM), MTXR ZR-75-1 cells expressing folate receptors display uninhibited growth in 1 nM folinic acid. The accumulation of folic acid, folinic acid, and methotrexate is enhanced in folate receptor-transfected WT ZR-75-1 cells and MTXR ZR-75-1 cells. Furthermore, the accumulation of folates and antifolate was similar in both transfected WT and MTXR ZR-75-1 cell lines that expressed folate receptors. This suggests that alterations in the reduced-folate carrier do not affect folate receptor function. We also examined the effect of folate receptor expression on the sensitivity of WT and MTXR ZR-75-1 cells to methotrexate and to the lipophillic antifolate trimetrexate. Increased folate receptor expression decreased the sensitivity of WT ZR-75-1 cells toward the antifolate trimetrexate, presumably through increased uptake of reduced folates. Although the expression of the folate receptor enhanced the growth of both cell lines in low folate concentrations, it did not affect the sensitivity of either WT or MTXR ZR-75-1 cells to methotrexate.  相似文献   

18.
A two-photon absorbing (2PA) and aggregation-enhanced near-infrared (NIR) emitting pyran derivative, encapsulated in and stabilized by silica nanoparticles (SiNPs), is reported as a nanoprobe for two-photon fluorescence microscopy (2PFM) bioimaging that overcomes the fluorescence quenching associated with high chromophore loading. The new SiNP probe exhibited aggregate-enhanced emission producing nearly twice as strong a signal as the unaggregated dye, a 3-fold increase in two-photon absorption relative to the DFP in solution, and approximately 4-fold increase in photostability. The surface of the nanoparticles was functionalized with a folic acid (FA) derivative for folate-mediated delivery of the nanoprobe for 2PFM bioimaging. Surface modification of SiNPs with the FA derivative was supported by zeta potential variation and (1)H NMR spectral characterization of the SiNPs as a function of surface modification. In vitro studies using HeLa cells expressing a folate receptor (FR) indicated specific cellular uptake of the functionalized nanoparticles. The nanoprobe was demonstrated for FR-targeted one-photon in vivo imaging of HeLa tumor xenograft in mice upon intravenous injection of the probe. The FR-targeting nanoprobe not only exhibited highly selective tumor targeting but also readily extravasated from tumor vessels, penetrated into the tumor parenchyma, and was internalized by the tumor cells. Two-photon fluorescence microscopy bioimaging provided three-dimensional (3D) cellular-level resolution imaging up to 350 μm deep in the HeLa tumor.  相似文献   

19.
Folate receptors are targets of various strategies aimed at efficient delivery of anti-cancer drugs. Folate receptors also play a role in the uptake of antifolate drugs which are used for therapeutic intervention in leukemia. Therefore, it is important to identify compounds which regulate expression of folate receptors in leukemic cells. The present study examined if curcumin could modulate the uptake and cytotoxicity of the antifolate drug methotrexate, in KG-1 leukemic cells. This is the first report to show that curcumin (10–50 μM) causes a significant, dose-dependent, 2–3 fold increase in uptake of radiolabelled folic acid and methotrexate into KG-1 cells both at 24 h and 48 h of treatment. Interestingly, pre-treatment of KG-1 leukemic cells with curcumin (10 μM and 25 μM) also caused a statistically significant enhancement in the cytotoxicity of methotrexate. We performed Real Time Quantitative RT-PCR to confirm the upregulation of FRβ mRNA in curcumin treated cells. Immunocytochemistry and Western blotting showed that curcumin caused increased expression of folate receptor βin KG-1 cells. Our data show that the mechanism of curcumin action involves up-regulation of folate receptor β mRNA and protein in KG-1 cells. Therefore, combination of non-toxic concentrations of curcumin and methotrexate, may be a viable strategy for therapeutic intervention for leukemias using a folate receptor-targeted drug delivery system.  相似文献   

20.
Liu M  Xu W  Xu LJ  Zhong GR  Chen SL  Lu WY 《Bioconjugate chemistry》2005,16(5):1126-1132
(99m)Technetium-labeled diethylenetriamine pentaacetic acid-polyethylene glycol-folate (DTPA-PEG-folate) was synthesized and tested as a radiopharmaceutical agent, which targeted the lymphatic system with metastatic tumor. Folic acid was reacted with H2N-PEG-NH2 to yield H2N-PEG-folate. After purification by anion-exchange chromatography, the product was reacted with cyclic DTPA. By removal of unreacted DTPA by size-exclusion chromatography, DTPA-PEG-Folate was obtained. Fluorescein-5-isothiocyanate (FITC)-labeled DTPA-PEG-folate and DTPA-PEG-OCH3 were prepared via a dicyclohexylcarbodiimide-mediated coupling. In vitro competitive binding test showed that the uptake of [125I] folic acid was inhibited by DTPA-PEG-folate and the 50% inhibitory concentration was 4.37 pmol/L (R2 = 0.9922). The relative affinity of DTPA-PEG-FITC was 0.18 for human folate receptor comparing with folic acid. In cultured tumor cells, uptake of fluorescence-labeled DTPA-PEG-folate was found to increase significantly in folate-deficient medium compared with that of untargeted DTPA-PEG-OCH3 and FITC-ethylenediamine. The competition with free folic acid blocked the cell uptake of DTPA-PEG-folate. These results confirmed the DTPA-PEG-folate entered into KB cells through the folate receptor endocytosis pathway in vitro. The radiolabeled yield of [(99m)Tc] DTPA-PEG-folate was in excess of 98%, and specific activities of 7.4 kBq (0.2 microCi/microg) were achieved. After subcutaneous injection, [(99m)Tc] DTPA-PEG-folate exhibited an initial increase and successive decline of accumulation in popliteal nodes in normal Wistar rats. Expect for the kidney, uptake by other tissues was rather low. In a normal rabbit imagine study, the lymphatic vessels were readily visualized by single-photon-emission computed tomography following subcutaneous injection of [(99m)Tc] DTPA-PEG-folate. In conclusion, the [(99m)Tc] DTPA-PEG-folate conjugate may have a potential as a lymphatic tumor-targeted radiopharmaceutical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号