首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The major core protein (p28) of MMC-1, an endogenous type C virus of the rhesus monkey (Macaca mulatta), was purified and subjected to structural and immunological analyses. The NH2-terminal amino acid sequence of MMC-1 p28 showed extensive homology to the sequences of the major structural proteins (p30) of known mammalian type C viruses. Similarly, interspecies antigenic determinants shared by all the above viral proteins were detected in MMC-1 p28. Competition radioimmunoassays together with the results of statistical analysis of the primary structure data provided evidence that MMC-1 p28 is not more closely related to primate type C viruses of the Papio genus than to those isolated from rodents, cats, or New World monkeys. MMC-1 p28 was found to be closely related structurally to the p30 protein of the avian reticuloendotheliosis virus (REV-A), a horizontally transmitted type C virus of putative mammalian origin. In addition, MMC-1 p28 and REV-A p30 shared a specific subset of antigenic determinants not present in any of the other avian or mammalian type C viruses studied. These findings suggest that MMC-1 and REV may have a common evolutionary origin.  相似文献   

3.
4.
The reticuloendotheliosis viruses (REV) are a family of highly related retroviruses isolated from gallinaceous birds. On the basis of sequence comparison and overall genome organization, these viruses are more similar to the mammalian type C retroviruses than to the avian sarcoma/leukemia viruses. The envelope of a member of the REV family, spleen necrosis virus (SNV), is about 50% identical in amino acid sequence to the envelope of the type D simian retroviruses. Although SNV does not productively infect primate or murine cells, the receptor for SNV is present on a variety of human and murine cells. Moreover, interference assays show that the receptor for SNV is the same as the receptor for the type D simian retroviruses. We propose that adaptation of a mammalian type C virus to an avian host provided the REV progenitor.  相似文献   

5.
Several 50 to 70S tumor viral RNAs have previously been shown by electron microscopy to be dimers, with the two monomer subunits joined near their 5' ends. Five additional naturally occurring type C RNA tumor viruses have now been examined: AKR, and endogenous murine ecotropic virus; NZB, an endogenous murine xenotropic virus; and ecotropic and an amphotropic virus isolated from a wild mouse; and the avian reticuloendotheliosis virus (REV). All five 50 to 70S RNAs have similar 5'-to-5' dimer structures. Therefore, the observations support the hypothesis that the dimer linkage is a structural feature common to all type C mammalian viruses. REV is the first example of an avian virus with a clear 5'-to 5' dimer linkage. All of the mammalian viral RNAs, but not REV, showed symmetrically placed loops in each subunit of the dimer. Possible molecular structures and biological functions of the dimer linkages and loops are discussed.  相似文献   

6.
Reticuloendotheliosis virus is an avian type C retrovirus that is capable of transforming fibroblasts and hematopoietic cells both in vivo and in vitro. This virus is highly related to the three other members of the reticuloendotheliosis virus group, including spleen necrosis virus, but it is apparently unrelated to the avian leukosis-sarcoma virus family. Previous studies have shown that it consists of a replication-competent helper virus (designated REV-A) and a defective component (designated REV) that is responsible for transformation. In this study we used restriction endonuclease mapping and heteroduplex analysis to characterize the proviral DNAs of REV-A and REV. Both producer and nonproducer transformed chicken spleen cells were used as sources of REV proviral DNA; this genome was mapped in detail, and fragments of it were cloned in lambdagtWES.lambdaB. The infected canine thymus line Cf2Th(REV-A) was used as a source of REV-A proviral DNA. The restriction maps and heteroduplexes of the REV and REV-A genomes showed that (proceeding from 5' to 3') (i) REV contains a large fraction of the REV-A gag gene (assuming a gene order of gag-pol-env and gene sizes similar to those of other type C viruses), for the two genomes are very similar over a distance of 2.1 kilobases beginning at their 5' termini; (ii) most or all of REV-A pol is deleted in REV; (iii) REV contains a 1.1 kilobase segment derived from the 3' end of REV-A pol or the 5' end of env or both; (iv) this env region in REV is followed by a 1.9-kilobase segment which is unrelated to REV-A; and (v) the helper-unrelated segment of REV extends essentially all of the way to the beginning of the 3' long terminal repeat. Therefore, like avian myeloblastosis virus but unlike the other avian acute leukemia viruses and most mammalian and avian sarcoma viruses, REV appears to be an env gene recombinant. We also found that the REV-specific segment is derived from avian DNA, for a cloned REV fragment was able to hybridize with the DNA from an uninfected chicken. Therefore, like the other acute transforming viruses, REV appears to be the product of recombination between a replication-competent virus and host DNA. Two other defective genomes in virus-producing chicken cells were also cloned and characterized. One was very similar to REV in its presumptive gag and env segments, but instead of a host-derived insertion it contained additional env sequences. The second was similar (but not identical) to the first in its gag and env regions and appeared to contain an additional 1-kilobase inversion of REV-A sequences.  相似文献   

7.
The reticuloendotheliosis viruses (REVs), originally isolated from avian species, constitute a group of retroviruses which are more closely related to mammalian retroviruses than to other avian retroviruses. The envelope glycoproteins of members of the REV group display a striking amino acid sequence identity with a group of primate oncoretroviruses which belong to a single receptor interference group and include all of the type D and some type C primate oncoretroviruses. Members of the REV group also have a broad host range which covers most avian cells and some mammalian cells, including those of simian and human origin. In view of this broad host range and the envelope sequence similarities, we investigated the cross-interference pattern between REV and primate virus groups to determine whether they utilized the same receptor. Superinfection experiments using a vector virus containing an Escherichia coli lacZ gene showed that reticuloendotheliosis and simian oncoretroviruses constitute a single receptor interference group on both human and canine cells and indicate that the viruses bind to the same receptor to initiate infection. These results suggest that this receptor binding specificity has been maintained over a wide range of retroviruses and may be responsible for the broad spread of these retroviruses between different orders of vertebrates.  相似文献   

8.
Immunoglobulin G directed against the DNA polymerase of Rauscher murine leukemia virus (R-MuLV) could bind to 125I-labeled DNA polymerase of spleen necrosis virus (SNV), a member of the reticuloendotheliosis virus (REV) species. Competition radioimmunoassays showed the specificity of this cross-reaction. The antigenic determinants common to SNV and R-MuLV DNA polymerases were shared completely by the DNA polymerases of Gross MuLV, Moloney MuLV, RD 114 virus, REV-T, and duck infectious anemia virus. Baboon endogenous virus and chicken syncytial virus competed partially for antibodies directed against the common antigenic determinants of SNV and R-MuLV DNA polymerases. DNA polymerases of avian leukosis viruses, pheasant viruses, and mammalian type B and D retroviruses and particles with RNA-dependent DNA polymerase activity from the allantoic fluid of normal chicken eggs and from the medium of a goose cell culture did not compete for the antibodies directed against the common antigenic determinants of SNV and R-MuLV DNA polymerases. We also present data about a factor in normal mammalian immunoglobulin G that specifically inhibits the DNA polymerases of REV and mammalian type C retrovirus DNA polymerases.  相似文献   

9.
The genome structure of defective, oncogenic avian reticuloendotheliosis virus (REV) was studied by heteroduplex mapping between the full-length complementary DNA of the helper virus REV-T1 and the 30S REV RNA. The REV genome (5.5 kilobases) had a deletion of 3.69 kilobases in the gag-pol region, confirming the genetic defectiveness of REV. In addition, REV lacked the sequences corresponding to the env gene but contained, instead, a contiguous stretch (1.6 to 1.9 kilobases) of the specific sequences presumably related to viral oncogenicity. Unlike those of other avian acute leukemia viruses, the transformation-specific sequences of REV were not contiguous with the gag-pol deletion. Thus, REV has a genome structure similar to that of a defective mink cell focus-inducing virus or a defective murine sarcoma virus. An additional class of heteroduplex molecules containing the gag-pol deletion and two other smaller deletion loops was observed. These molecules probably represented recombinants between the oncogenic REV and its helper virus.  相似文献   

10.
The RNA content and polypeptide composition of reticuloendotheliosis virus (REV) was compared to that of C-type RNA tumor viruses. Two RNA species with approximate sedimentation values of 64S and 4S were observed after sucrose gradient centrifugation of RNA extracted from purified REV. The high-molecular-weight RNA species of REV sedimented slightly faster than that of the Bryan strain of Rous sarcoma virus (RSV). Although these characteristics were consistent with those of other C-type RNA tumor viruses, significant differences were observed when the polypeptide composition of REV was compared with that of RSV possessing envelope determinants of Rous-associated virus RAV-2 and RAV-3. Five polypeptides of which two were glycosylated were resolved by polyacrylamide gel electrophoresis. The major nonglycosylated polypeptide of REV did not comigrate with that of RSV (RAV-2)-RSV(RAV-3). The majority of the group-specific antigen reactivity resides in this major nonglycosylated polypeptide of avian tumor viruses and comigrates when proteins of several avian tumor viruses are subjected to coelectrophoresis. This difference in the migration of the major polypeptide of REV and RSV(RAV-2)-RSV(RAV-3) may explain the absence of avian tumor virus group-specific antigen in REV.  相似文献   

11.
Previous analysis of the virion proteins of an N- and a B-tropic type C virus of BALB/c mice, of 16 N-tropic recombinants (XLPN viruses) between these viruses, and of eight NB-tropic viruses derived from the B-tropic virus suggested that among these closely related viruses N-, B-, or NB-tropism was associated with the electrophoretic mobility of p30 on sodium dodecyl sulfate-polyacrylamide gels, and thus that p30 might determine this phenotype. To obtain further evidence for the association of structural markers of p30 with N-, B-, or NB-tropism, we have analyzed the p30's of these same viruses by using two-dimensional tryptic peptide mapping and slab gel isoelectric focusing. The results of these analyses suggest that (i) a single peptide unique to the N-tropic virus p30- is present in the p30 of all N-tropic recombinants; (ii) a single peptide unique to the B virus p30 is not present in p30's of the N-tropic recombinants, and this peptide is also absent in p30's of NB-tropic viruses derived from the B-tropic virus; and (iii) p30's of NB-tropic viruses possess a new tryptic peptide not found in the p30 of their B-tropic virus progenitors, and this new peptide is not found in the p30 of the N-tropic virus of BALB/c or the XLPN viruses. These results are consistent with the possibility that p30 may determine the N-, B-, or NB-tropism of murine leukemia viruses. In addition, these studies indicate that some of the N-tropic recombinants have experienced recombination within the p30 gene.  相似文献   

12.
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events.  相似文献   

13.
Chicken bone marrow cells transformed by reticuloendotheliosis virus (REV) produce in the cytoplasm a ribonucleoprotein (RNP) complex which has a sedimentation value of approximately 80 to 100S and a density of 1.23 g/cm3. This RNP complex is not derived from the mature virion. An endogenous RNA-directed DNA polymerase activity is associated with the RNP complex. The enzyme activity was completely neutralized by anti-REV DNA polymerase antibody but not by anti-avian myeloblastosis virus DNA polymerase antibody. The DNA product from the endogenous RNA-directed DNA polymerase reaction of the RNP complex hybridized to REV RNA but not to avian leukosis virus RNA. The RNA extracted from the RNP hybridized only to REV-specific complementary DNA synthesized from an endogenous DNA polymerase reaction of purified REV. The size of the RNA in the RNP is 30 to 35S, which represents the subunit size of the genomic RNA. No 60S mature genomic RNA was found within the RNP complex. The significance of finding the endogenous DNA polymerase activity in the viral RNP in infected cells and the maturation process of 60S virion RNA of REV are discussed.  相似文献   

14.
The major internal protein, p30, of rat type C virus (RaLV) was purified and utilized to establish intra- and interspecies radioimmunoassays. Three rat viruses were compared in homologous and heterologous intraspecies assays with no evidence of type specificity. The only heterologous viruses to give inhibition in these species assays were the feline (FeLV) and hamster (HaLV) type C viruses; these reactions were incomplete and required high virus concentrations. An interspecies assay using a goat antiserum prepared after sequentially immunizing with FeLV, RD 114, and woolly monkey virus p30's and labeled RaLV p30 was inhibited by all mammalian type C viruses, although preferentially by RaLV, FeLV, and HaLV. Thus, as in a previously reported assay developed with HaLV p30, rat, hamster, and cat p30's seem more closely related to each other than to mouse type C virus p30. High levels of specific antigen were found in all cell lines producing rat virus, whereas embryonic tissues from several rat strains and cell lines considered virus-free based on other tests were negative for p30. Rats bearing tumors containing Moloney murine sarcoma virus (RaLV) did not contain free circulating antibody to RaLV p30. Fifty-one human tumor extracts (including two tumor cell lines) were tested for activity in the RaLV species and 47 in the interspecies assays after Sephadex gel filtration and pooling of material in the 15,000- to 40,000-molecular-weight range. At a sensitivity level of 7 ng/ml (0.7 ng/assay) in the interspecies assay, all human tissues, with one exception, were negative. The one positive result is considered nonspecific based on proteolysis of the labeled antigen. Input tissue protein of the purified tumor extracts averaged 1.9 mg/ml with a range of < 0.025 to 22 mg/ml. Tissues from NIH Swiss mice processed in the same manner were positive in the interspecies assay but negative in the intraspecies RaLV assay.  相似文献   

15.
The major internal protein, p30, of rat type C virus (RaLV) was purified and utilized to establish intra- and interspecies radioimmunoassays. Three rat viruses were compared in homologous and heterologous intraspecies assays with no evidence of type specificity. The only heterologous viruses to give inhibition in these species assays were the feline (FeLV) and hamster (HaLV) type C viruses; these reactions were incomplete and required high virus concentrations. An interspecies assay using a goat antiserum prepared after sequentially immunizing with FeLV, RD 114, and woolly monkey virus p30's and labeled RaLV p30 was inhibited by all mammalian type C viruses, although preferentially by RaLV, FeLV, and HaLV. Thus, as in a previously reported assay developed with HaLV p30, rat, hamster, and cat p30's seem more closely related to each other than to mouse type C virus p30. High levels of specific antigen were found in all cell lines producing rat virus, whereas embryonic tissues from several rat strains and cell lines considered virus-free based on other tests were negative for p30. Rats bearing tumors containing Moloney murine sarcoma virus (RaLV) did not contain free circulating antibody to RaLV p30. Fifty-one human tumor extracts (including two tumor cell lines) were tested for activity in the RaLV species and 47 in the interspecies assays after Sephadex gel filtration and pooling of material in the 15,000- to 40,000-molecular-weight range. At a sensitivity level of 7 ng/ml (0.7 ng/assay) in the interspecies assay, all human tissues, with one exception, were negative. The one positive result is considered nonspecific based on proteolysis of the labeled antigen. Input tissue protein of the purified tumor extracts averaged 1.9 mg/ml with a range of less than 0.025 to 22 mg/ml. Tissues from NIH Swiss mice processed in the same manner were positive in the interspecies assay but negative in the intraspecies RaLV assay.  相似文献   

16.
The major polypeptides of visna viruses and other lentiviruses have been isolated and shown to be closely related if not identical in radioimmunoassays. By this criterion the lentiviruses form a distinct group of retroviruses unrelated to spuma viruses, mammalian and avian retroviruses that cause tumors, and unclassified retroviruses of cattle and horses. Two sera obtained from goats immunized with Mason-Pfizer monkey virus or squirrel monkey virus reacted with visna p30. Additional data suggest that this reaction represents infection of goats with a lentivirus or a new retrovirus closely related to the lentiviruses.  相似文献   

17.
We have identified p10 as a fifth gag protein of avian sarcoma and leukemia viruses. Amino-terminal protein sequencing of this polypeptide purified from the Prague C strain of Rous sarcoma virus and from avian myeloblastosis virus implies that it is encoded within a stretch of 64 amino acid residues between p19 and p27 on the gag precursor polypeptide. For p10 from the Prague C strain of Rous sarcoma virus the first 30 residues were found to be identical with the predicted amino acid sequence from the Prague C strain of Rous sarcoma virus DNA sequence, whereas for p10 from avian myeloblastosis virus the protein sequence for the same region showed two amino acid substitutions. Amino acid composition data indicate that there are no gross composition changes beyond the region sequenced. The amino terminus of p10 is located two amino acid residues past the carboxy terminus of p19, whereas its carboxy terminus probably is located immediately adjacent to the first amino acid residue of p27.  相似文献   

18.
It was previously demonstrated that the 60,000 dalton (p60) precursor-like polyprotein containing murine p30 was a constituent of the feline leukemia virus pseudotype of Moloney sarcoma virus [m1MSV(FeLV)]. It is now shown that p60 is detected in cells of five mammalian species transformed by m1MSV, indicating that p60 is specified by this genome. Moreover, little or no murine p30 is detected in the m1MSV-transformed cells, suggesting that the murine group p30 antigenic reactivity of S + L- cells is ude to p60. Pulse-chase studies in cells producing m1MSV(FeLV) show that p60 is the largest polypeptide detectable during the pulse, and that intracellular p60 is not cleaved into smaller (for example, p30) polypeptides during chase periods of up to 10 hr. The lack of cleavage of p60 is in contrast to the properties of p30 precursors detected in cells containing replicating avian or mammalian RNA tumor viruses. The inefficient cleavage of intracellular p60 and the kinetics of appearance of murine p30 in extracellular m1MSV(FeLV) suggest that p60 cleavage to p30 occurs in cells shortly before virus release. While only p60 was detected in the m1MSV-transformed cells, p60 and p70 were detected in m3MSV-transformed cells, and no immunoprecipitable polypeptides were detected in HT-1 MSV-transformed cells. The observed differences in the intracellular polypeptide expression by each of the strains of MSV suggests differences in genetic content.  相似文献   

19.
Reticuloendotheliosis viruses have been shown to be causative of tumors in a variety of avian species. The major structural protein of these non-genetically transmitted viruses is demonstrated to possess antigenic determinants common to those of all known mammalian type C viruses. These findings establish a mammalian origin for this oncogenic avian retrovirus group. None of the known mammalian type C virus groups demonstrated a closer immunological relationship to avian reticuloendotheliosis viruses. These results suggest that reticuloendotheliosis viruses have been non-genetically transmitted for a long period of evolution or that these viruses may have arisen by relatively recent infection of birds with an as yet undiscovered mammalian type C retrovirus.  相似文献   

20.
The polypeptides of reticuloendotheliosis virus (REV) were separated by gel filtration in the presence of guanidine hydrochloride. The eight peaks obtained by gel filtration were then analyzed by polyacrylamide gel electrophoresis and four appeared to contain single polypeptides. The material identified as p29 was used to prepare antiserum. This protein constitutes the major internal non-glycosylated polypeptide in the virion. Double immunodiffusion indicated that the antiserum was specific for p29. Using this antiserum, cross-reactivity was demonstrated between REV, chick syncytial virus, duck infectious anemia virus, and spleen necrosis virus. Antiserum to p29 failed to cross-react with Rous sarcoma virus. This indicates that p29 is a group-specific antigen shared by the viruses of the REV complex. A microcomplement fixation test was developed with this antiserum that will be useful in the quantitation of REV and the identification of other members of this newly defined group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号